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Abstract

We introduce the Realized moMents of Disjoint Increments (ReMeDI) paradigm
to measure microstructure noise (the deviation of the observed asset prices from
the fundamental values caused by market imperfections). We propose consistent
estimators of arbitrary moments of the microstructure noise process based on high-
frequency data, where the noise process could be serially dependent, endogenous,
and nonstationary. We characterize the limit distributions of the proposed estima-
tors and construct confidence intervals under infill asymptotics. Our simulation and
empirical studies show that the ReMeDI approach is very effective to measure the
scale and the serial dependence of microstructure noise. Moreover, the estimators

are quite robust to model specifications, sample sizes and data frequencies.
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1 Introduction

Economic time series are often modelled as the sum of a latent process obtained from
an underlying economic model and another term that reflects a variety of adjustments
to or departures from the frictionless theoretical model, thus

Y = X + e . (1)
~— ~—

observed series  underlying process  deviation

The two processes X and ¢ are generated by different mechanisms, and can have quite
distinct statistical properties and economic interpretations. Both quantities may be
of interest as they give interpretation of some underlying economic theory and its
relevance for the observed data. However, since only the sum process Y is observable,
this makes estimation and inference challenging.

We are concerned with applications of this framework in financial markets where
the observed asset pri(:e1 (Y) subsumes both market microstructure noise (¢) and the
efficient price (or fundamental value) (X). The fundamental theorem of asset pricing says
that X should be a semimartingale process (Delbaen and Schachermayer (1994)). In
practice however, many market frictions, such as: transaction costs, price discreteness,
inventory holdings, information asymmetry, measurement errors, may cause observed
prices to deviate from this ideal price. One may also want to allow for temporary
mispricing (French and Roll (1986)) or fad effects (Lehmann (1990)); see also O’'Hara
(1995), Hasbrouck (2007) and Foucault et al. (2013) for insightful reviews. A lot of
early work proceeded on the basis that the microstructure noise process was i.i.d.,
but recently this assumption has been shown to be too strong; both theoretically and
empirically the microstructure noise may exhibit rich dynamics depending on its origin.
If the microstructure effects are negligible, the observed price should be close to the
efficient price and be unpredictable. Therefore, the dispersion and persistence of the
microstructure noise serve as natural measures of market quality. Market quality is
of concern to regulators and practitioners as well as academics; proxies for market
quality are widely used in empirical analysis, see Linton and Mahmoodzadeh (2018). In
the working paper Li and Linton (2019), we proposed two market liquidity measures,
called IBAS and ABAS, that were defined in terms of the autocovariance function of
the noise process. Such liquidity measures are robust to the pattern of order flows, and
have an intuitive economic interpretation.

We introduce a general econometric approach to measuring microstructure noise

in a nonparametric setting. Specifically, we propose a new estimator of the moments

LBy price it always means the logarithmic price in this paper unless stated otherwise.
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of a general dependent noise process based on the observed noisy high-frequency
transaction prices; we call our estimator the Realized moMents of Disjoint Increments
(ReMeDI). The estimation method is based on the differencing paradigm, which is
widely used in microeconometrics to eliminate nuisance parameters, see, e.g., Athey
and Imbens (2006). We build on the general setup introduced in the seminal work of
Jacod et al. (2017). Specifically, we assume that the underlying efficient price follows a
semimartingale, which may accommodate stochastic volatility, jumps, etc. We allow
the microstructure noise to be weakly dependent and to have a serial correlation of an
unknown form that may decay at an algebraic rate; this may capture, for instance, the
effects of clustered (or hidden) order flows or herding (Park and Sabourian (2011)). The
microstructure noise is allowed to have time-varying and stochastic heteroskedasticity,
which allows for intraday variation in the scale of the noise. The general setting we
consider allows for random and endogenous observation schemes. We develop estima-
tors of arbitrary moments of the microstructure noise; this includes the autocovariance
function of powers of the noise process as well as other quantities of interest. We derive
the stable convergence in law of the estimated quantities as the sample size increases
on a given domain. We provide a consistent estimator of the asymptotic variance that
allows us to quantify the accuracy of our estimator.

We present some simulation studies comparing the ReMeDI approach with the
method of Jacod et al. (2017). We find that the ReMeDI approach is relatively robust to:
the data frequency, the sample size, the tuning parameter, and to model specification.
We provide an empirical study on an individual stock price, which reveals that the
microstructure noise has non-trivial serial dependence, but that the dependence struc-
ture falls short of being long memory. This is consistent with leading microstructure
models,” and differs from the findings in Jacod et al. (2017).

The robustness of the ReMeDI approach as demonstrated in our simulation and
empirical studies has an intuitive explanation. The differencing method works because
the increments of X over disjoint intervals (the efficient returns) are small and/or
uncorrelated, and what remains is attributed to e. This property distinguishes the
ReMeDlI approach from alternative high-frequency estimators that rely structurally on
the infill asymptotics.

1.1 Related literature

There are a number of methods for estimation of the moments of noise and the param-
eters of the efficient price. Specifically: the two-scale/multi-scale realized volatility

2For example, Hasbrouck and Ho (1987), Choi et al. (1988) and Huang and Stoll (1997) model the
probability of order reversal, and microstructure noise becomes an AR(1) process.
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by Zhang et al. (2005), Zhang (2006), Ait-Sahalia et al. (2011); the optimal-sampling
realized variance by Bandi and Russell (2006, 2008); the maximum likelihood esti-
mators by Ait-Sahalia et al. (2005), Xiu (2010); the pre-averaging method developed
in Podolskij and Vetter (2009), Jacod et al. (2009); and the realized kernel by Hansen
and Lunde (2006), Barndorff-Nielsen et al. (2008). Most of this literature only considers
i.i.d. microstructure noise.

Several recent papers explore richer microstructure models by allowing for auto-
correlated noise. The estimators of the second moments of noise in Da and Xiu (2019)
and Li et al. (2020) are by-products of the integrated volatility estimators in the presence
of autocorrelated noise. In a recent seminal paper, Jacod et al. (2017) introduced the
first feasible procedure, called the local averaging (LA) method, to estimate arbitrary
moments of microstructure noise using high-frequency data. They also introduced a
general framework allowing for a stochastic observation scheme and a microstructure
noise with a semimartingale “size process”. We follow their general setup and derive
asymptotic properties of our estimators under this general framework. We differentiate
our paper from Jacod et al. (2017) as follows. First, the ReMeDI method is based on
differencing; while the LA method is based on deviations from local averages, both ideas
are widely used in other contexts such as panel data and semiparametric estimation
to eliminate nuisance parameters, see Yatchew (1997) and Athey and Imbens (2006).
Second, the ReMeDI approach works beyond the infill framework. Specifically, in the
working paper version, Li and Linton (2019), we proved that the ReMeDI estimator is
consistent and has an associated CLT in a long-span, non-infill setting. In this case, the
method works provided the efficient price is a martingale in which case its increments
are uncorrelated at any horizon. The LA method, however, is inconsistent when applied
to low-frequency data. Next, the finite sample performance of the LA estimators heavily
depends on the sample size and the noise-to-signal ratio (the ratio of noise variance to
the integrated volatility of the efficient price), see an analysis in Jacod et al. (2017). This
may cause many issues in the implementations with real data.’ The bias of the ReMeDI
estimators by contrast only depends on the slope of the microstructure autocovariance
function, and in short memory contexts this bias can be very small. Last, the ReMeDI
approach has another two advantages in real implementations: it is computationally

very efficient,* and it is very robust to a wide range of tuning parameters.

30ne can easily verify the following scenarios by simulation: (1) the LA estimator may report positive
autocovariances when the true noise process is uncorrelated or even negatively autocorrelated; (2) the
LA estimator has larger bias and variance if there are bursts of volatility in the efficient price process, e.g.,
when the volatility process jumps; (3) the LA estimator gives very different estimates over two samples
where the noise processes are identical but the efficient prices have different variances.

“4For example, the LA (ReMeDI) takes 99.77% (0.23%) of the CPU time to estimate the variance of the
noise using noisy price data from a random walk plus AR(1) noise model, based on 1,000 simulated



Our paper introduces an econometric approach to richer microstructure models. It
aims to integrate the market microstructure and financial econometrics literature. It is,
however, not the first attempt to push towards the integration of the two fields. Diebold
and Strasser (2013) focus on the correlation of efficient price and noise in several
leading microstructure models, and study the implications for integrated volatility
estimation. Li et al. (2016), Chaker (2017) and Clinet and Potiron (2017) model the
microstructure noise as a parametric function of the observable trading information
and develop efficient volatility estimators. Bandi et al. (2017) develop a novel measure
of the staleness of stock returns under the infill asymptotic framework. Bollerslev et al.
(2018) study the relationship between trading volume and return volatility around
important public news announcements using intraday high-frequency data. The study
relies critically on high-frequency econometric techniques to identify jumps. Da and Xiu
(2019) advocate the quasi-maximum likelihood approach to estimate both the volatility

and the autocovariances of moving-average microstructure noise.

2 Continuous-Time Framework and Assumptions

We follow the general framework of Jacod et al. (2017) to specify the continuous-time
efficient price process, the observation scheme, and the microstructure noise. We have
almost the same regularity conditions as Jacod et al. (2017).° Hence, for brevity of
exposition, we put some details of the specifications in Appendix A.

2.1 Efficient price process

We assume that the efficient price process X is an Itd6 semimartingale defined on a

filtered probability space (Q, F, { F; }+>0, P) with the Grigelionis representation

t t
Xt = XO —|—/0 bSdS —|—/0 O'des + <l91{‘19|§1}> * (p — q)t + <l91{|19‘>1}> *pt, (2)

where W, p are a Wiener process and a Poisson random measure on Ryand E re-
spectively. Here, (E,£) is a measurable Polish space on (Q, F,{F;}i>0,P) and the
predictable compensator of p is q(ds, dz) = ds ® A(dz) for some given o-finite mea-
sure on (E, &), see Jacod and Shiryaev (2003) for detailed introduction of the last two
integrals. Further regularity conditions on X are discussed in Assumption (H) in Ap-

pendix A. Note that the setting of the efficient price is very general, and it allows for

samples of size 23,400.
5The only difference is that we have more restriction on the parameter that controls the degree of
serial dependence of the stationary noise, see Remark 2.1.
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stochastic volatility and jumps in both the price and volatility processes.

2.2 Observation scheme

We assume a triangular array structure. For each , let {#! : i € N, } be a sequence of
random finite observed times (usually when a transaction occurs) with 0 = tj < t} <
..., where N is the set of nonnegative integers. We denote

nei=) lygpeyy, O(mi) =t —tl i >1. ©)
i>0

Here, n; is the stochastic number of observations recorded on the interval [0, ¢] for
t € Ry, while §(n, 1) is the i*" spacing of the observation times. For any process V, we
denote V" := Vin.

Let {0, } » be a positive sequence of real numbers satisfying 6, — 0 as n — co. We
may think of 6, as the average magnitude of the spacings between successive obser-
vation times. If the observation times were equally spaced (the regular observation
scheme), then §, would be proportional to that spacing. The difference between the
regular observation scheme and the general scheme is characterized by two semimartin-
gales a,w, which are approximately the conditional mean and variance of the time
differences, and characterizing the density of the observations. Specifically, conditional
upon an appropriate o-algebra, the expectations of §(n,1) /8, and (8(n,1)al | — 6,)? /62
are approximately equal to 1/a ; and &} ;, respectively. For brevity, we move the
details of the specifications to Assumption (O) in Appendix A. A useful consequence of

our setting is the following convergence in probability:
P t
Sanp 25 Ap = / aeds. )
0

The observation times framework is very general, and includes, e.g., reqular sampling
scheme, time-changed reqular sampling scheme, modulated Poisson sampling scheme, and
predictably-modulated random walk sampling scheme, see the discussion in Jacod et al.
(2017).

2.3 Microstructure noise

The microstructure noise has a multiplicative form that allows for serial dependence,

stochastic scale and dependence of the scale on the efficient price process. At time ¢/,



the microstructure noise is given by

n

el =1 Xi

Here, 7 is a nonnegative Ito6 semimartingale on (Q, F, {F;};>0,IP).® The process
{Xi}icz is stationary and p-mixing, and its degree of serial dependence is controlled by
a parameter v. Specifically, the autocovariance function of {x;}; decays at a polynomial

rate, i.e., X
|Cov(xi, Xitk)| < o’ (5)

where K > 0 is some positive constant. The reader is referred to Assumption (N) for
the detailed specifications of 7y and .

Remark 2.1. To obtain limit results, we shall suppose that v > 1 for consistency and that
v > 2 to derive the limit distribution, which allows for quite strong dependence close to the long
memory boundary. Jacod et al. (2017) require v > O for consistency and v > 1 to establish the
limit distribution.

2.4 The observed noisy price
Finally, the observed noisy price Y/" is given by (fori =1,...,n;)
Y/ =X+ ¢ (6)

Note that both X and ¢ are latent, only Y is observable, and we aim to estimate the
moments of € using Y only.

3 The Design and the Intuition of the ReMeDI Estima-

tors

3.1 The estimator of the autocovariance function

The intuition of the ReMeDI design can be best seen in a simpler setting. Let {¢; };cz be

a stationary mixing sequence with mean zero; we would like to estimate its covariance

®The semimartingale assumption for 1 is adopted for comparison with Jacod et al. (2017), but other
assumptions can be accommodated and might be more reasonable.



e := Cov(g;, &;1¢). The natural estimator is the sample analogue

111[

= Z €i€itly )

which is consistent and asymptotically normal under very mild conditions.
We consider instead an estimator that replaces the “observations” ¢;,¢;,, by the
“differences”, i.e.,

1 Tl—g—kn
= Yo (ei—eiw) (give — €ivok,),
ik

ReN

where ky, k}, are integers that grow at certain rates as the sample size increases. The
estimator 7} follows the ReMeDI design and it provides another consistent estimator

k,,vk

of ry, provided k, A kj, — oo, and == — 0. The intuition of the consistency becomes

immediate if one rewrites 77 ] as

n———ky n——~—ky, n———ky
1 1 1

—f—
17"
== Z, €i€ipe — — Z Eifiti+k, — €k, €ite T — Z €k, Eit-ltky-
- -, -, -,
- - Mn —Mn - Mn
(8)

The first average is (asymptotically) equivalent to the sample analogue, thus it con-
verges in probability to ry; the remaining three averages are centred at ryy,, 7y, ¢, and
¥r4+k,+k,, which themselves converge to zero as n — oo at a rate depending on (5).
Taking differences seems redundant if the time series {¢;}; is observable. However,
in our framework, ¢ is masked by the efficient price X, and we only observe Y = X + e.
Taking time differences removes the effect of the efficient price. The intuition of such
removal under infill asymptotics is that the differences of the efficient prices, say,

Xt — X!

iy, are much smaller than the differences of the noise as 7 increases.

3.2 The general ReMeDI design

We next formally define our ReMeDI (Realized moMents of Disjoint Increments) esti-
mator of a general class of parameters. First, we provide some notations that we will

use below. Let J be the set of all finite sequences of integers satisfying

J={i=Guj--jg) HEZI=1,2,...,0;q9 > 2}.

In the sequel, we will assume without loss of generality that j; = max{j; : j; € j} for

any j € J. The j-moments of yx, the stationary component of microstructure noise, are



given by
q
sl
I=1

This is our parameter of interest (after proper scaling by the 7y process); it includes
the autocovariance function of the noise process and many other examples as special
cases.

Let k = (ky,...,k;) be a g-tuple of integers. For any j € J and any process V, let
I(k,j)} be the set of observation indices on [0, {| for which the following multi-difference
operator A]"()fZ is well defined”:

9

k e
A7 =TT (Vi = Vi) (10)
=1

Then the ReMeDI estimator corresponding to r(j) based on data {Y/}"" | and tuning
parameters k is defined by

ReMeDI(Y;j, k)f := Y AF(Y)L (11)
icl(k,j)}

Remark 3.1. Using the above notations, we rewrite the estimator v} as follows

The general ReMeDI approach inherits two salient features of this estimator determined by the
choices of k: 1) the first entry of k will be negative whereas the remaining ones are positive, i.e.,
the first difference is a forward difference and the remaining ones are backward differences;
2)V1 <1< q,lk| — coasn — oo, and we will often write ky, = (k1,,. .., kgn) in the sequel
to reflect such dependence.

We discuss a little more why the general ReMeDI procedure works under infill
asymptotics. For this purpose, suppose that the noise size process -y is constant and we

are estimating IE <H?:1 er jz> . Suppose that k;, satisfies the two properties in Remark 3.1.

Next, we explain how to connect [E <H?:1 e ].l> and A;‘n (Y)# with A;‘” (). To see this,
we first note that {i + j; — k; , }; are the “distant” indices of the intervals on which the
backward and forward differences are taken. Figure 1 illustrates a simple example
with j = (j1,j2,/3), kn = (—kn, 2ky, 4ky,) for some k, € IN. The forward difference
starts at the (i 4 j;)-th observation and ends at the (i + j; + k;,)-th observation; for

7By convention we set A;‘(V);1 =1ifj=@and A;‘(V)f = 0if j is a singleton.
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n Ynr . n n n n
Yi+j3—4kn i+j2—2kn Yi+j3Yi+j2 Yi+j1 Yi+j1+kn

Figure 1: Illustration the ReMeDI estimator of j-moments with j = (ji, j2, j3) and k,, = (—ky, 2ky,, 4ky,).

the remaining indices in j, the associated differences start from i + j,,7 + j3 and end
ati+ jo — 2ky, 1+ j3 — 4k, respectively. The intuition of the ReMeDI approach is that
the “distant” noise terms are approximately independent of each other, and are also
independent of the “clustered” noise {e’ +J'z}l (recall a special case outlined in (8)),
therefore

E (A]{‘” (s)f) ~ ]E( ?:1 s?ﬂ-]).
If k; ,, is still relatively small such that sup, 6, |k; ,| — 0, the differences/increments of

the efficient price over the intervals are asymptotically negligible. That is, A;‘” (Y)l ~

A;‘n (€)!. Thus the averages of A;‘” (Y)# will converge in probability to IE <H§7:1 er jz> by
the law of large numbers. This is the intuition of the identification.

4 The Asymptotic Properties of the ReMeDI Estimators

4.1 Consistency

We next give the large sample properties of the ReMeDI estimator (for a given choice of
k) in our general setting. For a general -y process that satisfies Assumption (IN), the
“average size” of the noise moments [E (H?Zl e} +]'1) is f(f 'yZdAs / A, and this scaling
appears in the probability limit of the ReMeDI estimators. Also recall (5) that v is the
parameter that controls the degree of serial dependence in the noise.

Theorem 4.1. Let Assumptions (H, O, N) hold, assume v > 1 and k,, satisfies
_kl,?’l — 0, kl,n — 0, Vi > 2,

sup; [6pk; | = 0,7 € (0,1/2), VI >1, (12)
kl+1,n - kl,n — oo, VI >2,

as n — oo. Forj € J, we have the following convergence in probability:

. t g
ReMeDI(Y;j, ky )} . dAs .
ROLD SR L), (13)
n t
where r(j) is defined in (9) and Ay in (4).
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This says that our estimator consistently estimates r(j) up to a time ¢-varying scaling
factor that depends on the average scale of the noise and on the stochastic process
governing observation times.

Let {ky, }, be a sequence of integers satisfying k, — oo, k;,0,, — 0. Let k,, be specified
as follows: k;,, = —k, ifl = 1,and k;, = (I — 1)k, if I > 2. Then, k, satisfies the
conditions in (12).

4.2 Limit distribution

We first restrict further the values of k, in order to facilitate the limit theory.® Among
many possibilities, we propose the following specification of k;,, which is solely deter-

mined by a single integer k;;:

—ky, ifl =1,
kl,n - (14)
2011, if1>2,

where k,, is related to v as follows:

11
1 -
v>2, kiby =0, nye <20'3)'
Remark 4.1. Note that (14) implies (12). In the sequel, we will omit k, and simply write
A;(Y)} and ReMeDI(Y;j)} instead ofA;‘” (Y)7 and ReMeDI(Y;j, ky,)} when ky, satisfies (14).

We establish the CLT for both the following centered stochastic processes:

26 = = (ouReMeDI(Y; ) 1) [ %A, )5 ZG)g = v (

The first process involves unknown but deterministic norming, whereas the second

ReMeDI(Y;j)" )
- ( ])t _ R(])t) .
t
process is normed by the observed stochastic sample size. Thus the second one is
“feasible” in practice. Now let Foo 1= /o Ft.

Theorem 4.2. Let Assumptions (H), (O) and (N) hold, and ky, v satisfy (14). For any t >
0,j,j’ € J, we have the following Fo-stable convergence in law

@) (Z(G)EZGHT) g (Z(§)t, Z(§')¢) , where the limit is defined on an extension (Q), F, P)

of (O, F,P). Conditionally on F, (Z(j)t, Z(j')¢) are centred Gaussian with (co)variances
o(j,j’)s that is given by
. o . o t g+q' . ./ t g+q —
73,3 =5(3,3") [ A A+ 1)) [ 4 wada, (15)

8In the supplementary material Li and Linton (2020), we discuss how to select k,, in practice.
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where s(j,j') is given by (B.6).

6) (ZG)ZG0) =5 (Z(0)0, Z(')s)  where the linit i defined on an extension (0, F, P)

of (Q, F,P). Conditionally on F, (Z(j)t, Z(j')+) are centred Gaussian with (co)variances
0(j,j' ) that is given by

. s(j,j’) rt ' r(i)r(§’) [t " RG)R(G; [t

RG)r(i) rt o_ r(HRG): 1t o
_%t(])/o o “SdAS_%t(])t/o yImdAs.

(16)

Remark 4.2. s(j,j') is the asymptotic variance of the ReMeDI estimators contributed by the
stationary part of the noise. The explicit form is given by (B.6) in Appendix B.1. When the
observation scheme is simpler, e.g., when ay = 0 or 1, the asymptotic variance (as well as its
consistent estimator) are much simplified, see the discussion in Appendix B.2.

Remark 4.3 (Asymptotic variances of ReMeDI and LA). Note that the ReMeDI and LA
estimators have very similar asymptotic (co)variances. The only difference lies in the s(j,j’)
part, which represents the asymptotic variance contributed by the stationary part of noise. The
s(j,j') of the ReMeDI estimators includes the asymptotic (co)variances of the “distant” noise
terms (recall the discussion in Section 3.2). It is therefore larger than the counterpart of the
LA estimators. Hence, the LA estimators are asymptotically more efficient (although one can
improve the efficiency of ReMeDI by taking averages of estimators computed using different
k). However, simulation studies show that the ReMeDI class works better in finite samples
with realistic sample sizes (or equivalently, data frequency) — it has smaller finite sample
variance and is almost unbiased under various model specifications. Moreover, the ReMeDI
approach has greater computational efficiency, which pays off when one is working with massive
high-frequency datasets (recall Footnote 4).

Theorem 4.3. Suppose that all the conditions of Theorem 4.2 hold. Moreover, {in}n, {®n}n
are two sequences of integers satisfying:
in P k4o

50, i,00 =0, — 0,
ko fnOn Kndn ¢

— 0. (17)

For any j € J, we have the following F-stable convergence in law

.\
)/.n_t., _ (ReMeDI(Y”)t = R(j)t) Y (18)
o(j, i) n

12



where @ is a standard normal random variable that is defined on an extension of the space and is
independent of F, and 7(j,j')} is a consistent estimator of the asymptotic variance constructed
in (B.7).

4.3 Estimating the autocovariances of microstructure noise

In this section we consider the special case concerning the estimation of the autocovari-

ance function of the microstructure noise. Let j, = (0,/),¢ € IN, and let
~ 1 ﬂt—kn—g
hei= -ReMeDI(Y;jo)f = — ) < e = ﬁké—kkn) <Y1’n - Yi"_zkn> N )
" e i Sok,

The following corollary provides the limit distribution.

Corollary 4.1 (ReMeDI estimators of autocovariances). Under the conditions of Theo-

rem 4.2, we have
FoY/! Ls—Foo — /e .
Vi <Rt,€ - Rt,é) =T NA(0,5Geje)e),

where

. 1 t t - t_ t _
T(jejo)e == 7 (512/0 yedAs +V%/O YefsdAs + R, | EdAs - 2Rt,m/0 ’Y?lxsdAs) ;

(20)
Ry = Vefot%fms, S¢ 1= ki (IE((XOXe = 70) (XiXk+e —70)) + 37%) :
Moreover, under the assumptions of Theorem 4.3, we have
(R, Ry) B, e
o(je jo)i

where ® is a standard normal random variables as in Theorem 4.3 and T (jy, j¢)} is provided
in (B.7).

Remark 4.4. s, represents the variance of the ReMeDI estimators contributed by the stationary
part of noise. It has two components. The first part Y 2> SE((xoxe —7¢) (XkXkre — 1¢)) 1S
in fact the asymptotic variance of the sample analogue, recall (7). The second part 3y p> _ 17
is the asymptotic variance of the three additional terms appear in (8) that arise in differencing.

Remark 4.5. The last three terms of 0 (jy, j¢ )+ that appear in (20) arise because of the stochastic
sampling scheme; it is positive and is zero whenever vy = 0, &5 = 0 or s = K, where K is a
constant.
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We note that while the multiplicative structure of microstructure noise (recall (A.3))
allows for a time-varying and stochastic size of the noise, the serial correlation of
the noise is not affected by the size process. This structure allows us to estimate the
autocorrelations of noise directly once we have an estimator of the autocovariances.
Define the ReMeDI estimator of the noise autocorrelation, 7(¢)} := R\’t“ o/ R\’tfo, and its
asymptotic variance estimator

FO) = Giejoin;  _ 2niG(jo,je)iReMeDI(Y, j,)f | ni(ReMeDI(Y,j,)})*7 (jo, jo)y
' (ReMeDI(Y, jo)})? (ReMeDI(Y, jo)})? (ReMeDI(Y, jo)/)*

The following corollary spells out the limit distribution of the proposed estimators.

Corollary 4.2 (ReMeDlI estimators of autocorrelations). Under the conditions of Theo-
rem 4.3, we have the following Fo-stable convergence in law

ny

A Ls—Foo

where ® is a standard normal random variable as in Theorem 4.3.

5 Simulation Study

5.1 Model settings

We suppose that the efficient price process has stochastic volatility and jumps that
appear in both the price and volatility processes:

dX; = 1 (p1 — Xp)dt + 0rdWy ; + & ANy, do? = ko (o — 07)dt 4 nordWa s + & 1 dNy;
Corr(Wy,Wy) =v; &1y ~ N (0,42/10); Ni~ Poi(A); ot ~ Exp(9).
(22)

We set
k1 = 0.5; p1 = 3.6; kp =5/252; up = 0.04/252; = 0.05/252; v =05 A =1, 6 = 1.

This setting is motivated by some empirical facts that jumps in price levels and volatility
tend to occur together, see Todorov and Tauchen (2011).
We further suppose that the stationary component of the microstructure noise

follows an AR(1) process with Gaussian innovations
iid.
Xir1=pxite, ¢ ~ N (0,1 —pz), ol < 1.
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Note that x has unit variance. We set p = 0.7, motivated by the empirical studies
in Ait-Sahalia et al. (2011) and Li et al. (2020).

5.2 LA versus ReMeDI

We estimate the autocovariances of microstructure noise using the ReMeDI estimator
and the local averaging (LA) estimators (Jacod et al., 2017). We assume that the noise is
stationary so that we can compare the estimates to the true parameters. We also assume
that the observation scheme is regular so that we know explicitly the data frequency,
which is a key factor that affects the finite sample performance of many high-frequency
estimators.

The top and middle panels of Figure 2 present the estimation of the first 20 autoco-
variances of the noise by ReMeDI and LA.” The solid lines are the mean estimates over
1,000 replications; the shaded region represents the 95% simulated confidence intervals.
We simulate 23,400 observations for each sample path, corresponding to the number of
seconds in a business day (6.5 trading hours). The ReMeDI estimators perform well:
the estimates are approximately unbiased with narrow confidence bands. Surprisingly,
there is a significant average deviation of the LA estimates from the true parameters,
and the confidence bands are much larger as well.

The deviation of the LA estimates is elicited by a finite sample bias, which is known
to be a fraction of the prior unknown quadratic variation (QV) of the efficient price,
see the discussion in Jacod et al. (2017). Thus to correct the bias, we need an estimate
of the QV. But the estimation of QV in the presence of dependent noise is not trivial,
see a discussion in Li et al. (2020). In a simulation context, we can obtain the QV and
thus can give the LA estimators the privilege to make the bias correction, which is, of
course not feasible in practice. The bottom panel of Figure 2 displays the bias corrected
estimation of LA. Even with accurate bias correction, however, the ReMeDI estimators
still outperform the LA estimators with almost no bias but greater accuracy.

It is interesting to compare ReMeDI and LA when the data frequencies vary. How-
ever, increasing the data frequency in a fixed time span has two effects: both the number
of observations and the noise-to-signal ratio of tick returns will increase. We design a
simulation study to separate the two effects and examine how sensitive ReMeDI and
LA are to these changes.

The left panel of Figure 3 presents the mean-squared-error (MSE) of the ReMeDI
and LA estimators for the first 20 autocovariances of the noise. The sample size
varies from 23,400 (1 trading day) to 117,000 (1 trading week), and 468,000 (1 trading

9We select the same tuning parameter for the LA estimator as in Jacod et al. (2017); we also check
other alternatives, and we find k,, = 6 leads to smaller bias.
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Figure 2: Estimation of the autocovariances of noise by the ReMeDI method (top panel), the
local averaging method (middle panel) and the bias corrected local averaging method (bottom
panel). The blue solid line is the mean estimates of 1,000 simulations by the three estimators.
The tuning parameters of the ReMeDI and LA estimators are 10 and 6, respectively. The noise
scale is fixed at ¥ = 5 x 1074,
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month). The MSE of the ReMeDI estimators remains low and slightly drops when
the sample sizes increases. The LA estimators, however, has larger MSE in a larger
sample! This is statistically counterintuitive. However, it does make sense if we recall
that the integrated volatility contributes to the finite sample bias of the LA estimators.
Hence longer time span induces larger integrated volatility (relatively to the number
of observations), which in turn leads to a larger finite sample bias. This is especially
so if the sample covers a period of volatility burst, and the likelihood of an such event
increases if the sampling period becomes large, see our empirical studies with real
transaction prices.

The right panel of Figure 3 compares ReMeDI and LA when noise variance varies
from 10~8 (small noise) to 10~° (large noise). We note that the advantage of ReMeDI
over LA is more prominent when the noise is smaller. Indeed, the size of noise in prac-
tice is closer to the small noise scenario, see an extensive empirical study by Christensen
et al. (2014). Thus in an extreme case when the noise has identical statistical properties
in two samples, LA may give very different estimates due to the differences in sample
sizes or noise-to-signal ratios. The ReMeDI approach remains robust and accurate.

5.3 Random noise size and observation times

As the last robustness check, we now allow for stochastic observation times and random
scales of noise. Following Jacod et al. (2017), we let {¢} follow an inhomogeneous

Poisson process with rate na; where a; = (1 4 cos(27tt)) /2 and the process -y satisfies

vt =Cyvr, Ayt = —po (7 — pr)dt + oy dWi.

We set p, = 10, iy = 1+ 0.1cos(27t), 0o, = 0.1, C, = 5 x 10~*. Figure 4 reports the
estimation of the autocorrelation functions by the two estimators. We observe similar
patterns presented in Figure 2: compared to the ReMeDI estimators, the LA estimators
have large biases with wide confidence band.

The supplementary material Li and Linton (2020) provides additional simulation
studies to examine the CLT, the effect of rounding error due to the discreteness of price
and sensitivity to the choice of tuning parameters.
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Figure 3: Mean squared error (MSE) of the ReMeDI and LA estimators for the first 20 auto-
covariances of noise based on 1,000 simulations. In the left panel, the noise scale is fixed at
v =5 x 10~* and the sample size varies; in the right panel, the size sample is 23,400 while the
noise scale parameter varies. The tuning parameters of the ReMeDI and LA estimators are 10
and 6, respectively.
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Figure 4: Estimation of the autocorrelations of noise by the ReMeDI method (left panel) and
the local averaging method (right panel). The blue solid line is the mean estimates of 1,000
simulations by the two estimators. The tuning parameters of the ReMeDI and LA estimators
are 10 and 6, respectively. The noise has stochastic scales and the observation times are random,
see the specifications in Section 5.3.

6 Empirical Study

We obtain the transaction prices of Coca-Cola (trading symbol KO)!’ from the TAQ
database for January 2018 (21 trading days). We remove prices before 9:30 and after
16:00. We collect approximately 50,000 observations per day, i.e., 2.1 transactions per
second on average. The average price is 46.84%, with a standard deviation of 0.85.

Figure 5 plots the estimated autocovariances of noise by the ReMeDI estimators
(the blue plots) based on samples of different sizes. The autocorrelation pattern is
non-trivial: noise exhibits positive autocorrelations up to 4 lags and shortly thereafter,
the sign switches to negative for a few lags, and then reverts to positive autocorrelations
before decaying to zero around 20 lags. The pointwise confidence interval'! includes
zero or excludes positive values after lag 5, which is incompatible with simple long
memory.

The ReMeDI estimates of microstructure noise presented in Figure 5 are economi-
cally intuitive. The positive autocovariances at the first several lags may be a conse-
quence of the order splitting strategies by high-frequency traders (Biais et al. (1995)), or

)‘]2

the successive transactions executed by limit orders (Parlour (1998))."~ The negative

19Tn the supplementary material Li and Linton (2020), we use the transaction prices of General Electric
(GE) and Citigroup (Citi), and we obtain similar results.

11 Recall Section B.2 that the duration of successive observed prices is part of the asymptotic variance
estimator. We do not plot the confidence intervals when we use transaction prices on different trading
days since the prices will cover overnight non-trading hours.

12Hasbrouck and Ho (1987) and Choi et al. (1988) model the continuation of order flows by an AR(1)
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autocovariances at the intermediate lags are consistent with the prediction of inventory
models (Ho and Stoll (1981), Hendershott and Menkveld (2014)), in which the market
makers induce negatively autocorrelated order flows to balance his inventories. How-
ever, the LA method gives very different estimates: it says that the noise is strongly
autocorrelated without any sign of decay after 20 lags. This is economically counterin-
tuitive — such a pattern, if it exists, would be exploited by high-frequency traders and
we would expect it to disappear rapidly. Moreover, the serial dependence, according
to the LA estimates, is even stronger when estimation is performed in a larger sample.
Since we only estimate autocovariances of noise up to 20 ticks/lags, or a few seconds,
it is statistically counterintuitive to obtain stronger autocovariance estimates using the
prices of a week than using the prices in a single trading day. This is in line with our
simulation study that the LA estimates are subject to a finite sample bias that depends
on the noise-to-signal ratio and sample size. The ReMeDI approach retains its accuracy

and robustness.

7 Concluding Remarks

We introduced a nonparametric method to separate the microstructure noise from
the underlying semimartingale efficient prices in a general setting. We demonstrate
the robustness of the proposed method compared to the main existing approach. We
have concentrated on the infill setting primarily and the univariate case. The method
naturally extends to the multivariate case, although in that case, several issues arise.
First, the nonsynchronous trading issue has to be faced. Second, even when the assets
trade on a common clock, there are some remaining theoretical results that need to be
established for the infill case. We have not discussed efficiency in a great deal, but one
can improve efficiency in two ways: first, by combining the estimators associated with
different choices of k, by a minimum distance, and second by doing a kind of GLS

procedure using a local estimator of ,,. We leave these problems for future research.

Appendix A Assumptions and Regularity Conditions

Assumption (H). The process b is locally bounded, the process ¢ is cadlag , there is a localizing
sequence { T, }n of stopping times and for each n a deterministic nonnegative function I'y, on
E satisfying [ T2(z)A(dz) < oo such that |9(w,t,z)| A1 < Ty (z) for all (w,t,z) satisfying
t < 1 (w).

process.
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0-8 Estimates Based on Transaction Prices of 02 Jan 2018
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Figure 5: Estimation of autocovariances of noise for Coca-Cola (KO) in January 2018. In the
top panel, we use the transaction prices of KO on 2 January 2018; in the middle panel, we
use the transaction prices of KO in the second trading week (8 January 2018 to 12 January
2018); we employ the entire transaction prices of KO in January 2018 in the bottom panel. The
tuning parameters for ReMeDI and LA are 10 and 6, respectively. The shaded area in the top
panel represents the 95% confidence interval, and we set i, = 5, ¢, = k3/5/n to compute the
asymptotic variances of the ReMeDI estimators, where 7 is the number of observations.
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Definition A.1. Let {x;}icz be a sequence of stationary random variables. For any k € N,
we define the following mixing coefficients for k € IN.:

Ok 1= sup {]IE(VthJrh)\ FE(Vi) = E(Vien) = 0, [IValla <1, [Vignll, <1, Vi € Gy Vi € gk+h}’
(A1)

where Gy := o{xi : p >k}, G := o{xx : q < k}. The sequence {x;}icz is p mixing if
px — 0as k — oo

Assumption (O). a, ® are two It6 semimartingales defined on (Q), F, { Fi }1>0, P) satisfying
Assumption (H). We further assume there is a localizing sequence { Ty} of stopping times and

positive constants K, and x such that:
(i) Fort < T, we have # <o <y and W < Ky 1.
(ii) Let (F}'),~ be the smallest filtration satisfying

(a) Fr C FY,

(b) t!"isa {F]'}1>0 stopping time for i = 0,1,2,...,

(c) 6(n,i), conditional F' | := ﬁil’ is independent of Feo := \/y>o Ft for i =
0,12,...

(iii) With the restriction {t! | < Ty}, and for all p > 0,

E (6(n,i) |Fy) — “‘fl” < Km157%1+K
i—1
E (o0 REAY R

— Jy
E ((S(n,z)P ‘]—' ) < K, p 0.

Assumption (N). Let {x;}icz be a stationary p-mixing random sequence with mixing coeffi-
cients {px }yeN , - At stage n, the noise at time t}! is given by

el =7 Xi (A.3)

where 7y is a nonnegative Itd semimartingale on (Q), F, { Ft}i>0,P) satisfying Assumption
(H) and is not identically zero on any interval. We further assume that {x;}icz is centred at 0
with variance 1 and finite moments of all orders, and is independent of Fe. Moreover, there is
some K > 0,v > 0 such that

Pr < k—If) VkeIN,. (A4)
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Appendix B Asymptotic (Co)Variance and its Estimation

B.1 The asymptotic (co)variance

This section introduces s(j, j’) that appears in the asymptotic variance in Theorem 4.2.
In the sequel whenever we have two vectors j = (ji,...,jz),j’ = (j,-- .,j;,) € J, we
suppose without loss of generality that g4 < 4’. We denote

j©5 = (o dgdrdor-dg) G-1=3\it}s
j(+k) = (1 +kjo+k, ..., jg+k) fork € Z,

jo, = (i:1€Qq) for Qg C {1,2,...,q},
Qp={Qy: QS {L2....q}}

For each Q; C {1,2,...,q}, there is an associated (unique) pair of subsets:
Qe ={12,...,41\Qp Quy:=QqU{g+1,...,q4'}. (B.5)

We denote for each k € Z the following moments'”

S0, j3k) =7 (& (i'(+K))) = (i) (1)
s1G,5K) = ¥ 7 (jo, @ (jo, (+K))) TT r(iji +5);

Q€9 IGQC
s20,§5K) = ), r(ujp HOrGo)rGy) = Yo r({ik @ (+k)r( )
1€j.y€j’ J1€j
141
=Yy r(jp +keirGly)
jy€i’

Then s(j,j’) is given by

)= s0( k) + 10,5 K) + 5203, k). (B.6)
kezZ

B.2 The estimation of the asymptotic (co)variance

First, we introduce a sequence of notations

2 —
;S\n o k (5(7/1 i+1+k, ) l+2+2k + t1+2+k u(l)n . " w(l)n/é\ﬂ
l (t?-‘rk ) V Pu ’ rs

3By convention we let r(®) = 1.
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~n
U(Z,])? = 51‘ A] (Y)1+w(2)
i=0
) ntfw(S)nAn
ue,j iy = 9; A](Y)?+w(3) Ay (Y)1+w(3)”'
i=0
n—w(4)n
U458 =~ Y 5O ()
i=20"1k,

(5 k/]] Z 2 A]Qq@(]Q/(—i-k))(Y) H A

Qu€Qy j—=2°(Qq) kn fléEQg
n—w(6)n

n
Gyt 0 (V) ras),

uekiilt = Y X BGpnMid Niwerdi, (Vi

Ji€idp€j’ i=2ky

l#l,
ny— )
n
-1 Z Afiyai+0) NI A1 (i o)
Ji€i i=20k,
ne—w" (6)n
- Z 2 A{J,Hrk}@]( )i ],/(Y)?+w”(6)5’/
jn€i’ =27k
7
U(7,k;j,j')i = ReMeDI(j &j'(+k))i;  U(k:j,j)i = ) U(LKj,i)L,
(=5

where the indices appear above are given by

w(1)y := 24 2k, w(2)5 :=2+ (3+27 Dk, w(2)y := w(2)4 + j1 + ky;

w(3)§ =2+ (3+27 Nk, w(3)4 =2+ (5+2171+27 1)k,

+j1;

w(3)y = w(3)3 +]i +kn; w(4); = 2kn + ‘1;,1 +j1, w(4 )n = w(4); +]i +kn;

e(Qq) = (21Qql+q' =g =1 V1, w(5)fy =4k + ): jip v

w(5)n == w(5))\qQ;|+1 +]‘Z‘Q5]‘ Vv (j;\Qg\ + k) + kn;
(6)

The asymptotic variance estimator is given by

.. 1 & ..
oG, i)t = o Y 7,0t
/=1

24

]l/+k) forﬁzl,

5= (2172 4 2)ka + e V (i + k), w(6)] = (2172 +2777 4 2)ky + 1 + e V (jyy +),
Vo= (29724 2)ky + o V (ji + k), w"(6)% := (27 2+ Dky + (jiy + k) V1,
w(6)n =w(6 )3 +]1 +kn, w ( n=w ( )2 +j1+ku, w' (6)n = w"(6)§ ‘f’]ﬁ + ky.

(B.7)



where

in

713,51 = U(0;3,i")i + ) (Ulkj, i) + Uk, )1) + (i + U (45,§)1

k=1
o2(j,§")¢ = U(3,j,i");
_ 1
73(j,§')f = —;ReMeDI(Y;j){ReMeDI(Y;j)FU(1);
t
1
T (ReMeDI(Y;j){U(2,j")} +ReMeDI(Y;j"){U(2,j)F) -

The estimators seem quite complicated. However, the intuition will be clear in light of
the following convergences, which are proved in the supplementary material Li and
Linton (2020):

1. t ' 1. .. r_ r(j)r(j) [t _
o, Ly ) /O an, oG L arian,

1 ~ o P RGIREG) 1f R(G)r(") [, g r(ORG") [ g
n—to-g(],] )i’ At /0 D(SdAS — T‘/O s DéSdAS — T/O ’)/SDésdAs.

Now we consider some special cases where the asymptotic (co)variances are simpler.
As a consequence, the asymptotic variance estimators are also much simplified.

First, we consider the scenario &; = 0. The observations schemes that satisfy this
condition include the reqular sampling scheme, the time-changed regular sampling scheme;
next, let #; = 1, one can verify that the modulated Poisson sampling scheme satisfies this

condition, see the discussion in Jacod et al. (2017). The asymptotic (co)variance becomes

o o
5_(]- ]./) _ %:)f() r)/g 1 dAS/ if Ky = O,
GG (1T g A, — RG)R(G ), i@ = 1.

t

and a consistent estimator is given by

5G,i) = AR i = 0;
L @1G,i0 +05G.)8 +85G.5)7), ifa =1

where

ny— )
a2, i) = Z Ay (V)i (Visw@)

1
(] it = ——ReMeDI(Y j)fReMeDI(Y;j")}.
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Technical Proofs

Z. Merrick Li*  Oliver Linton!

September 8, 2020

A Assumptions and Notations

In the proofs, K will be a constant that may change from line to line. When it depends
on some parameter par, we write Ky, instead. But it never depends on n or any
parameters that depend on n.

Let V be any It6 semimartingale on (Q), F, (F¢)¢>0, P) that has a Grigelionis repre-
sentation as X in (2) with coefficients b", ", ®V, which satisfy:

Assumption (K). The processes b¥,cV, 9" are bounded with 0V (w,t,z) < ](z) for some
bounded function | on E satisfying [ J*(z)A(dz) < oo.

Then for any V satisfying Assumption (K) and any r > 2, we have for any finite
(Ft)-stopping times S < T,

E (|Vr — Vs|"|Fs) <E(T—S|Fs). (A1)
We also have
[E(Vr — Vs |Fs)| SE(T—-S|Fs). (A2)

Assumption (SHON). We have Assumption (H), (N), (O) and further assume that the
processes X, w, & and <y satisfy Assumption (K), and the process 1/« is bounded.
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According to a "localization procedure"”, see Lemma A.3 of Jacod et al. (2017), we
can always assume (SHON) below, which implies the following

Jo € (1/2+1,1),6(n,i) <K&, Ay <Kt, PQ}) — 1if Q) := {d,n; <1+ Kt}.
(A.3)

In the sequel, we will assume j = (ji,...,,j5),j = (j,-- .,]'(’7,) € J, and assume
without loss of generality that g < q’. Now we introduce some notations that will be
used throughout the proofs. In the sequel, k, and k;, are an integer and a vector of
integers that will be specified later.

Sl k)l = AF (V)T — ()8R (O, )} o= B GOT = #(iska), g =27

=27k, AV = al6(n,i4+1) =8, 0(,kn)! = Eu(v)u(j, kn)l;
(A4)

where

r(i;kn) = E(AF (0. (A.5)
When k;, satisfies the conditions specified in (14), we write g(j)! and u(j) instead of
g(j, kn) and u(j, ky)!.

Following Jacod et al. (2017), we introduce the decomposition of the filtered prob-
ability space (Q, F, (Ft)t>0,P). The processes X, a,®,y and the observation times
t! are defined on a space (Q%), FO, (F);50,P©); {x/}icz is defined on another
space (A1), G, (Gi)iez, PW) with G; := o(xx : k < i) and G' := o(xi : k > i). Let
O=00x00, F=FOggP=P0gPW.

B Some Auxiliary Results

Lemma B.1. Let & & be two variables in the probability space (1), G, P so that & is
G;-measurable and &' is G+ -measurable, where ¢ € N . Assume &, & have bounded second
moments. Under Assumption (N) in Li and Linton (2020),we have

[B(g8) — B(OE(E)| < K™ (B.1)

Proof. By first conditioning on G;, plus an application of the Cauchy-Schwarz inequality

(for the first inequality), the boundedness of the second moments, and an application



of Lemma VIII 3.102 of Jacod and Shiryaev (2003) (for the second inequality) yield:

E((E-E@©) (& —E@)))] < \/E((C—E(é))z)lﬁ((lﬁ (&~ E(&)16:)7) < KC™.
O

In the remaining part of this subsection, we will assume k;, satisfies (12). We denote

ky = ligg(kl—kl,n —kin);  kn:=kgnV (=ki,n) =sup{|k;,|: 1 <1 <q}.

Lemma B.2. We have under Assumption A.4 that

K

r(jikn) — ()| < ———, B.2
where r(j) is defined in (9).
Proof. Let Q, be the collection of all proper subsets of {1,2,...,4}:
Q={Q:Q&{L....q}} (B.3)

thus for any Q € Q, Q° # ©@. Now we have for Q € Qy,

‘IE<lekan [Tieq Xj Tliege 41 Xjrkz,n> ifleqQr,

IE Hsz H Xii—kin || = if c

icQ  1eQe ‘IE<X]'i*kz‘,n Hng X, HIGQC,Z;&Z_X].I*kl,n)‘ if 1 ¢ QF,
(B.4)

where [ = max{l: 1 € Q°}if 1 ¢ Q°.
Apply Lemma B.1 with ¢ = [Tieq Xj, [Tieoe 41 Xji—ky,r 6 = Xj1—kyr i = J1, £ = |k,
if 1€ Q,and ¢ = Xk, & = TlieqXj [lieqe iz Xji—ky,r 1 = Ji = ki £ = ky if 1 QF,

we readily get )IE(HZEQ Xji Tliege ij*kz,n> < C(lkpu| Ak,) 7. Now (B.2) is proved
since

r(j kn) —1(j) = Z (_1)|QC]E<HX]'1 H lekl,n>'

QeQ, leQ leQr
[
Lemma B.3. Assume (k, V ji )& — 0, let
nt_kn_jl K
ReMeDI' (i, k)i i= Y, (v7)7AN (1)1 (B.5)
i=29-1



Then for any r > 1, there is some constant K; ; > 0 such that

121
=

E (|ReMeDI(Y;j, k)7 — ReMeD (x;j, k)7 [1cy) ) < Keg(Ra v 1) 57l (B6)

Proof. Let

= X, — Xk, T (V?ﬂ', - 7?) Xitjr — (V?H,_k,,, - ﬁ) Xitji—Ky
gli,l = ’)’i <Xi+jl - XH—]';—kl/n) .
Now it follows (recall Q, defined in (B.3)) that
q
AFOOF =TT +80), (r)7af(x Hclz, = Y [I¢nTlan ®7)

I=1 QeQ,1eQ leQe

Apply (A.1) for X and 7, and the fact that x has bounded moments, we have for any
k>?2
E(lgh ) < Kk vindh, E(IZ5F) <K, Vil (B3)

Let ¢ = |Q°|, whence ¢ > 1 (recall (B.3)). For r > 2, apply Holder’s inequality with

exponents (r/,...,r{,-15), we have
T/
. =1
n m n 1l % m o ' (B.8) 7 . 0 %
E((TTzT12%0 ) <11 (]E(‘gi,l’ )) E{ ]2 < Kig ((kn V]1)5n> :
leQc  1eQ leQe leQ

(B.9)
(B.6) follows immediately.
For 1 < r < 2, we first note (B.9) still holds if / > 2. For ¢ = 1, we let Q° = {I*}.
Let Hl”l* = }—ﬁ%]z* e ® Q if I* > 1, and ’Hl = F'®Gifl* = 1. Then by the
independence of G and FO) (A.2) for v , we have

|E (¢}

Hzl*)

< K(ky V j1)dh <1+|Xz+m +

) . (B.10)

Xitjpe—kp

Since [;.4- ¢’ Zl is measurable with respect to H,., the boundedness of -, the fact that



X has bounded moments of all orders and (B.10) imply

E( E (éﬁl* [1¢% |H?fl*) D
I

) B.11
<K(ku V j1)65E ((1 + |Xisjs ) ZI;,L ) o

T+ | Xitjpe—kps Xitj; — Xitji—ki

<K(kn V j1)8%.
On the other hand, since r > 1, apply Holder’s inequality, we get
? 1/r
E ((gfz I1 C'Zl) ) <K <(kn \/]'1)55> : (B.12)
[£1*

Note that ¢ Zl* [T+ ¢ ! Zl is measurable with respect to F", ki ® G, combined with (B.11)

and (B.12), we can apply Lemma A.6 of Jacod et al. (2017) and obtain

vyt k B T r & T 1 P
E( L, o Hg’;ﬁ,) : K((k”vjl)‘s’g 1+(knvh>$l<5n”> < Kk V j1)4o
i=27-1 11"

The last inequality follows from the fact that &) (k, V j;) — 0. Now the proof is
complete. O

C Additional Auxiliary Results

In this section, we assume k;, is specified as follows for given an integer kj: k;, =
—kyifl =1,k , = 2!=1k, if I > 2. In line with the notations in Li and Linton (2020),
we will write Aj(+)! instead of A]{‘” (-)! when kj, is specified as above. Moreover, we
will replace r(j, ki) (recall (A.5)) by r(j, k). We further denote k;(i,1), := i+ j; — ki .
For Q; C {1,2,...,4q}, let

1_61' Xi+j — 1(j) if Q5 = @;
X(qui)n = ) c .
l (-1 T xipy, TT Xn(ip), if Qg 7 ©.

leQy leQg



X(Q;,, j') is defined in a similar manner for j’, Q;, c {1,2,...,4'}. We have for any i, k
that (recall u(j)! defined in (A.4)):

u(j)i = Z X(Qq:j)?? ”(]‘/)?Jrk = Z X(Q;//j,)?ﬁ'

QC{1.2,...q} Q;, c{12,...9'}

Now we introduce four mutually exclusive categories of pairs of (Q, Q;,), or their
complements (Qp, (Q;,)C ):

(Qp = (Q))", (C.1)
Q=11 (Qy) ={I'L1#T, (C2)
Q) =0,Q;=1{1}, (C.3)

| Q; =2, (Q,) = {I'}. (C.4)

First, we show

Lemma C.1. For any pair (Qy, Q;,) that does not satisfy (C.1) to (C.4) , we define the following
sets of indices for any integers i, k:

L(Q9)i = {h(i,D)n = 1 € QY T((Qy) vk = {hy (i +k,1)n: 1" € (Qp)};
H(Qq)i - {l+]l . l & Qq}, H(Q;/)H_k - {l‘i‘k‘i‘];/ . l/ c Q/q/}

Then there exists at least one index in 1(Qg); U H((Q;,)C)i+k that is at least k,, /3 apart from
the remaining indices in 1(Qf); U I[((Q;,)C)Z-+k UT(Qy); U II(Q;,)Z-H{.

Proof. We first consider pairs of (Qy, Q;,) that do not satisfy (C.1) to (C.4) but sat-
isfy |Qg| = ](Q:},)C|. If this were true, then violating (C.1) and (C.2) implies |Qg| =
’(Q;,)C‘ > 2. Now suppose Lemma C.1 is not true. Denote (lr)1§7§|Qg\ so that
hi(i,lc)n € H(Qg),-, and they are in an ascending order, i.e., b;(i,11), < hj(i,2)n <
. . 1 .
e K h](l’l|Q5|)n’ or equlvalently’ ll > lz > e > Z|Q5| (l"/[’)lgT/§|(Q;,)C| are defll’led
similarly for the indices hy (i +k,I2,), € H((Q;,)C )itk Since the minimal distance be-
tween any index in [(Qg); (or ]I((Q;/)C)Hk) and the remaining indices in I(Qg); UI(Qy);
(or H((Q;,)C)i+k U H((Q;,) )i+k) is ky, we conclude that each pair of indices

(5, L — hyp (i + b, B )| < ka/3,T=1,...,1Q5, (C.5)

were Lemma C.1 not true.

In this proof, many inequalities hold up to adding a constant. For example, we conclude z, > zJ, if
zn + ¢1 > z!, + ¢o, where ¢, ¢; are some constant and z,,, z}, are large when # is large.



Assume I1 > [1. Then by (C.5) we have (since |Qg| > 2):
|(hj(i, 1) — (i, 12)n) — (hy (i +k,1)n — hy (i + &, )n)| < 2kn/3, (C.6)
which implies

(h—1 — pli-1 ifl=1,1=1;
oh-1 _ohi=1_obh-1_ 1 ifl, =1,1,>1;
2h—1 —ohb-1 4 ol1-1 4 1 iflh>1,1,=1;

\211—1 =2h=1 p ol _oh-1  if ], > 1,00 > 1.

But it contradicts the fact that [y > max(ly, 1,1}). Therefore we have l; < I}; similarly
we get I; > 1}, thus we conclude I; = I]. We also have I, = I} since (C.5) (with T = 1)
implies [k| < k;,/3. We can proceed to prove Iz = I% for all I € Qf,i.e, Qf = (Q;,)C,
which is a contradiction. Therefore, we conclude that for any pair of (Qy, Q;,) that does
not satisfy (C.1) to (C.4), we have |Qg| # |(Q;’)C|'

Now we consider pairs of (Qg, Q;,) that do not satisfy (C.1) to (C.4) but satisty
Q5| > \(Q;,)C]. (C.3) implies |QgF| > 2. Consider the following scenarios:

"

L If[Qg] > |(Q;,)C | +1, apply the Pigeonhole Principle: consider |Qg | "containers” cen-
tred at {h;(i,1)n : hj(i,1)n € 1(Qg);} with "radius" k, /3. Were Lemma C.1 not true,
we need to place the |(Q:7,)C| +1"items" {hy (i +k,1'), € H((Q;,)C)i+k, ]I(Q;,)iJrk}z
into the "containers". The Pigeonhole Principle implies at least one of the "con-

tainers" is empty, thus Lemma C.1 must be true.

2. If [Qg] = |(Ql’1,)c| +1 > 2 and Lemma C.1 is false, there is one-to-one correspon-
dence between the |(Q;,)C| + 1 "items" {hy (i + k,I'), € H((Q;/)C)i+k/I[(Q;/)i+k}
and |Qg| "items" {h;(i,1)n : | € Qf} so that each pair has a distance less than
k,, /3 (recall a representation of such correspondence by (C.5)). Now we need to

consider the following two cases.

(a) H((Q%,)C)Hk = {hj(i +k 1)}, ie, (Q;,)C = {1}. Let’s fix the index of
H(Q;/)i+k ati+ k.S Let Qg = {l1, I} Similar to (C.6), we have

i+ k+ji 4+ ko — (i + k) — (B (i, 11 )n — B (i, 12)n)| < 2k /3.

2 Asymptotically we treat ]I(Q;/ )ik as one "item" since the distances between the indices in ]I(Q;/ )itk
are independent of n, thus "fixed".
3Tt canbe any of {i +k +j/, : I' € Q’,}, but asymptotically they are equivalent.
y i q ymp y they q



This contradicts to
i+ ke i — (i K) = (i k) = (5, 1)) | > (g ) = Ty (5, o)) | — e,

which is no smaller than k;,

(b) Now assume 3’ € (Q;,)C, I' > 1, we can apply the arguments used above
to show for each I > 1,1 € (Q;,)C, there is some I € Qf such that I, = Ir.
We also conclude |k| < k,,/3. Let I*, I} be the two indices satisfying (recall

Q5 >2):

I* = argmax hj(i,l),; I} = argmax i (i, D).
{1>1:e(Q))} {11 :hy (i) €(Q5) i }

(Note that I, could be 1.) Now we have
‘h]-/(i + k) — (i 4+ k) — (i (i, %) — h]-(i,li)n)| < 2k, /3.
But this contradicts to

[y (i 4 K, 1) = (i 4 k) = (R (i, 1) = By (i, )|

L NG = 1)) = [y 4 1) = G+ R)| i1 =1
By (4 K, ) = (4 )| = (B (6, 1) — By, 1)) | 1615 > 1
an-

This finishes the proof of Lemma C.1 for the case [Qg| > |(Q;,)C|. The conclusion for
Q7] < | (Q;,)C| can be proved analogously, and the proof now is complete. O

Lemma C.2. For any pair (Q, Q;,) that does not satisfy (C.1) to (C.4), we have

E(R(Qu)IR(Qy )| < Chi®s Wk ez (7)
Proof. Let one of the indices satisfying Lemma C.1 be h*. Write

where XZ*— iy and XZMF iy are the products of the remaining factors in x(Qy,j)’' X (Q; i

(other than x;+) that are measurable with respect to Gy« _, /3 and Gl +lkn/3] | respec-



tively. Since XZ* ko » X1+ and XZ*+ x, are integrable, we can apply Lemma B.1 to get
- 3

B (R 00 Ry ) — E (R syt (R0 ) | < K% and B0 )| < Ky
(C.8)
This finishes the proof of (C.7). Il
Lemma C.3. For all pairs of (Q, Q;,) that satisfy (C.1), we have for any k € Z,
€D ~ N1~ ] ./ [ o« of
)3 E(X(qul)?x(Qqul )?+k) = s0(j,j’7 k) —s1(j,j k)| < Kk, ©. (€9
Q. Q)

Proof. 1f Q5 = (Q))° = @, we have E((Qq i)/ X(Qi')l1 ) = s0(j,i'3k).
Now consider Q = (Q q/) #+ @ so that Q’ 7= = Qg (recall Q, defined in (B.5)), and

E()’(V(Qq,]):lkv(Qq r] 1+k> (I—I Xi+jy H Xz+k+]l, I_I Xh (il ,ZXh/ (i+k,1), )
leQy I eQ/ leQC

Let |k| < %, by successive conditioning as we did to obtain (C.8), we obtain

< Kk, °.

H?Ch i1 Xy (i-+k1). — 11 rGuii+%
lle lqu

This yields, together with the fact that ‘r (jQ , D leq/ (+k)) ‘ is bounded that

(H xivi 11 Xitk+j, IT Xy (i,1)0 Xy (i) ) (qu EBJQ ) TG +k)

leQy I eQ leQC ZEQC

| /\

+ Kk, .
leQy I eQ/ lle

<<H Xivi |1 Xitk+j, — (J'Qq@ibq,( )) H)Ch D)Xy (i 1) )

Apply Lemma B.1, by successive conditioning, we get that the expectation after the
inequality is also bounded by Kk;,”, since the indices {i +jj,i +k+j; : 1 € Qq,I' € Q. }
are at least k, /2 apart from the indices {#;(i,1)n, h]-/(i +k1y:le Qg}. This proves

Y E(XQuiiR(Qy k) —s1G,5K)| < Kk, (€10)
Q5=(Q))*#@



for |k| < k,/2. For |k| > k,,/2, we also have ’ < Qq, Q’,,j )1+k>’ < Kk, % and
1s1(j,j’; k)| < Kk, ?, thus (C.10) holds for |k| > k,/2 as well This completes the

proof. O

Lemma C.4. For all pairs (Q, Q;,) that satisfy (C.2) to (C.4), we have

(C.2)~(C.4) B R .
Y B(RQuiIR(Qp i) — 52, (13K) | < Kk, (C.11)
(Q42,))

where

sok, (G.356) = Y, r,Gujp +)rG-nrGy) = Y1, ({1} @' (+k)r(j-1)
Spnsi JIS|
141
=Y n,{ir + k@G ),
et

with

(i, o +k— (2" 1+ 1)ky) ifl =1,1' > 1
1, (i jp +5) = v (i, jiy +k + (271 + 1)ky) ifll =1,1>1 ,
r(njy +k— @1 =20k, ifl> 1,1 > 1,1 AT
r({ii} @i’ (+(k —kn))) ifl=1
(it oj (+(k+2%ky)))  ifl>1
j(+(=ka))) il = 1
{jj +k} @j(+ (2 k) ifl > 1

r, ({ji} @' (+k)) := {

e, (U +k} @j) = {

Proof. First, we prove

(C.2)
Y B(RQuIRQuiNe) = X i+ RrGrl)| < Kig
(Qq. Q1) fi€iy €l 1A

(C.12)

Let’sassume !’ > [ = 1. Then for (% + 21'_1> kp <k< <% + 21,_1> kn,th(i,,)n)(hi/(iJrk,l,),
[rzp Xitjr and [Ty Xigk +, are asymptotically at least k;, /2 away from each other. Ap-

10



ply Lemma B.1, we can separate the terms with an error bounded by Kk, *:
[ (R(Qu )R(Q k) = i+ = 2+ Dka)r(o)r(Gy)| < Koy, (C13)

For k < (l + 21’—1) ky or k > (é + 21/—1) kn, at least one of (i, 1), Ity (i + k, I') is at
least k,, /2 from the remaining factors in x(Qg,j)" (Q’ 1§14 thus we can show

E(F(Q IR (Q i) | V |+ = @7 4+ 1)ka)| < K,

thus (C.13) still holds. Similarly, we have for I > I’ = 1 that

B (R(Qu ER(QY k) = Pl + e+ 27+ Dl)r(o)r(GL)| < Kk, (€14

for — (% —1—2171) ky <k<-— (% +21’1> k,, and

E(R(Qu i) R(Qy i) ) | V |G i+ e+ (2171 1)k) | < K,

fork < — (% -1—21_1) kpork > — (% —|—2l_1> k,. Now assume I’ # 1,1 > 1,I' > 1. For
(21/’1 L %) k, <k< (21/’1 —o-1 %) k;,,, we have

T (R(Qu i) R(Qly i) = i+ K= (271 =27 ka)r ()| < Kk
For k > (21/_1 —2i-1 4 l) ky ork < (21/_1 -2 1) k., we have
2 n 2 nrs
E(R(Qq )IR(Qy i) 1i )| V [l i+ k= (2771 =27 1k) | < K™
This completes the proof of (C.12).
The proofs of
(€3)
Y E(R(Qu N R(Qy i) + X (L} @ (+h)r( )| < KK,
(Qq Q ) jlej
(C4)
Z IE(X(QW])?X(Q;’/] z+k> Z rkn {]l’ + k} EB]) (]Ll’) S Kk;v/
(Qq/Q;/) ]1/6]
are similar (in fact, simpler), and this completes the proof. O

11



Lemma C.5. For any integers i, k, we have

[E (u()iuG)Ek) — sk, (,575K)| < Kk, ©, (C.15)

where

sk (1,37K) i= 0 (j,§'3k) + 51 (5,37K) + sk, (3,37K)
and so (j,j’; k), s1 (j,j’; k) are introduced in Appendix B.1 in Li and Linton (2020).

Proof. (B.2) implies we can replace r(j; ku), ¥(j’; kn) by #(j), 7(j’) with errors no larger
than Kk, . Now (C.15) follows from (C.9) and (C.11).
[]

Next, we will present and prove a key result on stable convergence.

Theorem C.1. Let

th _Ziﬂtqfn ]19 ), G;n — Z:ltqkn il 9(] k,, )

kn ]1 dn Hl — Znt —kn— ]1 qdn
\/_Zz Gn t \/_ i=qn
G} := (G, G/"), H}:= (H}, H{").

H' =

-3

Assume (14), we have (G}, H}') converges Foo-stably in law to (G, Hy) with components
G: = (G, G}),H; = (Hy, H}) that is defined on an extension (ﬁ, f,]f’) of (Q, F,IP), which
conditionally on F, is a centred Gaussian martingale with conditional covariances

~ t /
E(G:Gi|F) = s(j,i") /0 y"TdA;, E(HH||F) = / VT R dAs; (C.16)
E(G:H:|F) = E(G;H;|F) = E(G{H:|F) = E(G{H;|F) = 0. (C.17)

Since {u(j)! }; are serially dependent, we will employ the "block splitting" technique
that is often used in the literature (see, e.g., Jacod and Rosenbaum (2013) and Jacod
et al. (2019)): we will divide the observations into "big blocks" of size pk; separated
by "small blocks" of size K; j/k, where p will eventually grow to infinity and Ky is a
constant that depends on j,j’.

Now we consider small blocks of size (2 + 2971)k,, and we need to introduce a
sequence of notations associated with the block splitting techniques. By polarization,
we will consider j = j; moreover, k;, satisfies (14) thus is also fixed. We therefore write

12



0! instead of (j, k,,)!" in the sequel.

m(p,q) :==p+2+27", Ju(pt):=1+ [m(pntwc] , Lu(p,t) i= qutTu(p, )m(p, q)kn — 1;
M= F' OGig i B = Hiparkniar 2P = Mot phuran

dpr =Y e, Ry =

1(0)] = L) —vmpaprar T O] =L@+ 2D mpa)epkn s

A(p) = (n(p)} [~ ), 7)) = (' (o)} [ (p)r )

F(p)t =Y ey, Mot = 0 n(p) = 1 (0)));

n n(pit) — n n n(pt n_ = n
Fp) =Y 7w, M=o er -7 ).

Since p > 2 + 291, we conclude that 7(p)j is H(p)}-measurable and 7' (p) is H'(p)/-

measurable. Now it follows that
Gf = F(p)i + F'(p)i + M(p)f + M'(p)f — R(p)}- (C18)
Lemma C.6. For fixed p > 2 + 2771, we have
E Q@) M) < K2k B (@) )| < Kpolkd.

Proof. By the independence of G, (0), the boundedness of v and Lemma B.1, we have
for j > i that

= (0] )| < KV

E ()} 195 g0kt ) | < KVonlkntj— )7

Thus, we have |E ({(p)" |H!)| < Kv/du zj.i Pl (ky 4+ j — )0 < Kpy/,kl 0. The
second estimate follows immediately from

E(Qomtime)| <k X B (01040001 M) )| < Kol
U<l <U3<Uy

This completes the proof. O

In the following lemma, we omit j and simply write s;(k),¢ = 0,1, s, (k) and
Sak, (k) instead of s;(j,j; k), ¢ = 0,1, s¢,(j,j; k) and so . (j, j; k).

Lemma C.7. Let v > 2, for any p > 2 + 2771, we have

Pha 1 p ¢l K
Y. ok (Skn(k)‘i‘skn(_k))—?] Sk—p, (C.19)
k=1 n n

13



where

¢j = )3 rGon)rGoy) R —2 ) (o) R

(LI):ju €A €]

2141 ifl=1,1'>1;
Rpi= ) r(0k)x 2141 ifl'=1,1>1;
k=—c0 / /
pVESL_pINP=L el > 1,1 > 1,1 £ 1
fr=2""1 ) ({0} @j(+k)).
k=—c0

Proof. Since v > 2, we have Zpk” ! k se(k) +sp(—k))| <K Epk” Tk L _KV for
pk Pkn kv ky
¢ =0, 1. Thus, it suffices to show

pk?‘l_l k Q:' K
). ok (s2,k, (k) + s, (—K)) — ?' < k_: (C.20)
=1

To see this, we will first show for jj, jir € j,I # I’ (recall r, defined in Lemma C.4)

pkn—1 k R K
v, G jv +K) + 15, G jor — k) — =2 < 22, C.21
k:Zl iy (Tl Ut K) 1, G jr = k) = =21 < 2 (C.21)
Let
2"+ Dk + 1 — jir ifl=11'>1;
k;z = (21_1 + 1)kn —I—jl/ —jl if ! = 1,l >1;

A (A A L W W

Then (C.21) follows from

pkn—1 pkn—1-k,,
Y (ri,Grjv +K) + 1, G =)k = 3 (r(0,k) +7(0,k+2k,)) (k+k,),
k=1 k=1-K,

and the easy estimates that

pkn—1—k), 00 pkn—1-k,
Y. r(0k)— Y #(0,k)| <Kk, 7, Y. r(0,k)k| <K,
k=1—k, k=—c0 k=1-k),
pkn—1—kj,
Y r(0,k+2k))(k+k,)| < Kk3°.
k=1-k,
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We can prove in a similar manner that for j; € j,

pkn—1

Y o i+ K @)+ (= k) = 5| < 22,
pky—1
Y o (G 050+ (i) @3(-k) - 5 < 32

This finishes the proof of (C.20) and the proof is now complete.

Lemma C.8. Let v > 2, for any p > 2 + 2771, we have
() 1
E (@O ) — phat (o) (s(3,0) = )| < Kkt (ke vkt vk 1) (22

Proof. We have ({(p)")? Z]y 70 (9") +22pk"_1 Z]y ,;k' 0707, ., where u(p, k)! :=

j Uitk
i —k+ pky, — 1. Thus, E ((¢(p)1)? |H!) = T7_o €(¢ ) + Zzpk”f Y o QE(E)Z;ZJ, where
for any nonnegative integer k
np ,__ n\2q k
Q(O)i,k 1= ponkn (i) sk, (k) (1 - pT

(17 = phas, () (79 (7 [H2)
@) = —ksy, < ) () ME (] [H])
(3) = s, (0L B () Mafo(m, j+1) — (v Mas(n,i + 1) [HY);
)y = si, (k) f(’fk)llE((’r]-) ((rfe)? = (V)7) s, j+ 1) 1) 5
(5)1% 1= —s, (k) LI ()7 (07 [ ) 5
(6)7 = Y1 0, (B (076], | FO) = s, (0 () (0], 121 ) )
(7);

P ”pk)lé (IE<] ]+k|Hn> <?7+k’}—(0)>>'

pknfl

3
First, we note by (A.2) that } ‘(’3 52"k, and an application of Lemma

C.7 yields a similar estimate Zp k” ! ‘@ ); p < Kpdi 2+Kk Next, we show

pkn—1

L [ec;

1
(6277 Kndh). (C.23)

Let 2(1)7; o= ((v1)2a = (71)al) 8(n,j+1), 2(2)1; = (Y1) ¥ (3(n,j+1) = 8(n i+
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1)), then we have €(3)/ & = sk, (k) B (l Vg ( z(1); + 2(2)}; |’Hf> By first condition-
ing on A7V o(6(n,j +1)), (A2) and (A.2), we have [E (2(1)%; [# )| < K(j—i)8,";
similarly, we get ’]E ( all — ’7)(5(11 j+1) }H”)’ < K(j—1)d, +p , together with the sim-

ple estimate (using again (A.2)) ‘IE < al'o(n,j+1) —allé(n,i+1) ‘7—[”)‘ < K(52+K

have
’E ( ’/Hn>‘ <(]—Z) 1+Pv53/2+x> .

This proves (C.23).
Next, since for any k > 0, d(n,j + 1) is independent of ’y]’-l '« conditional on 1, we
have by first conditioning on #" and the estimate (A.1) that

B () (O = ) e+ 1) [ )| < K3k,

<

k25,7 Similarly, we have Zpk" ! ’@(5)" P

which implies Ep = ‘6(4)%)

Kpk%62 3% . Next we can apply Lemma B.1 and Lemma C.5, which yields the following
Zpk et ()QE( p ) < Kpduk2™". Now let s(p)y, = Zpk __1 1) sk, (k). We

have

s(P)k, = ()| < Kpki ™,

kn* kn 1
L 1y (1= ) sk, (6) = s(p)i, = TP 5 (s, (6) + s, (—K)),
sak, (j§i k) = sa, (3, —K).-

The first estimate is obtained from Lemma C.7. Now we have

Pkn_l ¢
P42 L e oo (s6i) - )| < Kb
This finishes the proof of the lemma. O

Lemma C.9. If V is a cadlag process, p > 2 + 2971 and &bk, — 0, we have for all t > 0

t
Ju(pit) . - m
R e G T

kl’léi’l
Proof. We only need to prove

t
VidA
knén ]Vl(prt) V( L fo ° °

j=1 j—Dm(pa)kn — " m(p,q) (C.24)
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. W(pt
simce kn(sn Z]]:(lp )E<‘V(j*1)m(p/q)kn+Qn - V(jfl)m(p,q)k,,D S K kn(Sﬁ — 0. Let u? =
knouJn(p,t). Then we have k,dy, Z]I”:(f’t) V(;}—l)m(p,q)kn = fOtJrh" Vsdu!! where h,, :=

: P : P .
B (ptym(pa)k, — - 1t suffices to prove h, — 0 since uf — Ai/m(p,q). Since

Jn(p, t)m(p, q)kn — ny < m(p,q)kn, we have for any € > 0

limsup P(|hy| > €) < limsup P(Ayre — At < m(p,q)kndy) — 0,
n n

as Aire > At, kndy — 0. Now the proof of (C.24) is complete. O

Lemma C.10. Let (Snk% —0,v > 2, (5nk%” —ooasn — oo, forallp > 2+ 29-1 we have

YR () L (sG)-2) [(a¥aas  (c2s)

j=1 m(p,q)
E(p)i =0, F(p)l —0; (C.26)
K P
]E((M/(P)?y) < ?t, R(p)! — 0. (C.27)
Proof. (C.25) follows directly from Lemma C. 8 and Lemma C.9. Since J,(p,t) < kli 5:

we have by Lemma C.6 that E(|F(p)}|) < 5 /Zkv — 0; the same result applies to F'(p)}.

This proves (C.26). By the martingale property, we have

10\ 12 Jn(pt) g—1\n 2 Ki
1E<(M (p)t) > = 2 IE(<€(2+2 )((i—l)m(p,q)w)kqu) ) = o
The last inequality follows from Lemma C.8 and J,(p, ) < Kt . Note that I,(p, t) —
(ne —kn — j1) < (p+2(2771 + 2) )k, therefore, we have
ni+(p+2(277142) )k
E((R(P)?) <Kpkn Y. E((01?) < Koukt 0.
i=ni—ky—j1+1

This proves (C.27). O

Proposition C.1. Let v > 2,6,k3 — 0. For any fixed p > 2 + 2971, the sequence of processes
M(p)" converges Feo-stably in law to the process G(p); defined on an extension (Q), F,P) of
the original space, conditionally on F, is centred Gaussian with (conditional) variance

2= s (sG0) - 1) [ o

Proof. Letfj(p)j :=n(p)j =1(p)j- Let AV, P)} = Vi apiran — VimDimipapkatan T
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any process V. We also set M = M; U W, where W is the Brownian motion driving
X and M denotes the class of all bounded (F;)-martingales orthogonal to W. By a
standard stable convergence theorem for triangular arrays, see, e.g., Theorem IX 7.28

in Jacod and Shiryaev (2003), it suffices to prove the following three convergences:

¢ t
POV (G2 ) B s () =) [aas s

m(p,q)
PR (@ He) o (C.29)
YV e M, Z}i(f’t) E <1/7\(p);1A(V, p) ‘H(p);gl) P.o (C.30)
(1) Note that E (( ‘% P 1) ( )12 (’H P 1) ~E ((‘(;ﬂ)}“)2 \H(P)}ll)/

and from Lemma C.6, we have (7(p ) )2 < Kp(S k22 Since J,(p, t) < (SHZZ’

clude that

we con-

PR (G(p))? [ M(p)y ) < Kpkh 2 0.

Now (C.28) follows from the first part of Lemma C.10.

(2) By Lemma C.6, we have

]n(Prt) A 3 ]n Pt 4 34
Y E () i) < Kokl X0 B () [Hip) ) < K0k,
j=1 =

Now (C.29) is proved.

(3) It suffices to show

PODE (n(p)ya(v, p);

(P)-1) =0, (C31)

since [E (A(V,p)}-1
[((j — V)m(p,q9)kn + qun, jm(p,q) — 2k, — 1]. We have E ((9?A(V,}9);-1

%(1)ff]-%(2)l], where

(p);?_1> = 0 for any V € M. Consider any i in the range
(P)?-l) -

X)) =B (Vo DV, 0! | Fo vyttt ) - X@V = E ()

g((jfl)M(P,q)fl)knﬂ‘l) :

By Lemma B.1, we have ) k=%, now we apply the boundedness of 7

2@ <
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and get ’%

\/(ME <(A( ‘.7-" (g on-+an ) Thus, we have

(P)7—1> ‘ < kai_v\/‘snlE <( (V. ’}— m(p, q)kn+qn>

and an application of the Cauchy-Schwarz inequality and the martingale property
of V yield

E (n(p)/ AV, p);

IE(( PEVE (n(p)ya(v,p); <p>71))2)s1<p,tk;2”nz( P p?)

_ V0)2>.

<Kp ki 2E( (Vi

Jn(pt)ym(p.q)kn+qn

fVe My E (( B oo Vo)2> is further bounded by E ((Veo — V9)?) < K.

This proves (C.31) with V € M ;. WhenV =W, t]n(p Em(p,g o < t+1for nlarge

enough on the set QO (recall (A.3)). Thus, (C.31) is proved with V = W on the set
Q}. Since P(Q)}) — 1, the proof is complete for V = W.
O

Theorem C.2. (M(p)}, H') convergences Foo-stably in law to (G(p)t, Hy) that is defined
on an extension (Q, F,P) of (O, F,P), which conditionally on F, is a centred Gaussian

martingale with conditional covariances
~ ~ t 1 ~
E(G(PIG(UF) = 2(p i) B(HHIF) = [ 715dA, BG(p)HIF) =0

Proof. Lemma C.8 yields an estimate that E((ﬁ (p)]”)2> < Kyduky,. Now we have
n /t =

vergence theorem and the fact that d,k, — 0. This in turn leads to the following

H(p)71>) — 0 by Lebesgue’s dominated con-

convergence for any € > 0

%(p);?l) ) (C.32)

Ju(pit)
f E(( 7) Lij(pyr>e}

On the other hand, we have ™M) = o(u, p)"9M(u, p)?, e“CP) = o(u, p)M(u, p);
where g(u, p)} and g(u, p): are predictable with finite variation, and 2M(u, p)}' and
M(u, p): are martingales (see, e.g., Theorem I1.2.47 in Jacod and Shiryaev (2003)).
According to the proof of Theorem VIII.2.4 in Jacod and Shiryaev (2003) (see also
the proof of Theorem A .4 in Jacod et al. (2017)), (C.28) and (C.32) imply g(u, p)} —
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g(u, p)t. Now the joint convergence follows from Proposition C.1 and Theorem A.4
of Jacod et al. (2017). Il

Proof of Theorem C.1. By polarization, it suffices to consider j = j’. The process V(p)" :=
G} — M(p)" satisfies lim, ;e limsup, , P(|V(p)}| >€) = 0 forall e > 0,t > 0.
This follows from (C.18) and Lemma C.10. On the other hand, Z(p,j):(w) < K and
Z(p,j)t(w) = Z(j,j)t(w) for all t > 0 and w, we thus have G(p): L, G, Now
Theorem C.1 follows from Theorem C.2. O

The next lemma will be used to prove the consistency of the proposed estimators for
the asymptotic variances and covariances. The first part of the lemma (C.33) is similar

to but more general than Lemma B.3.

Lemma C.11. Let j, € 3, jo = (orr---1jog,)s 90 = ljel, € = 1,2,...,d. {w}}]_,isa
sequence of integers satisfying w,1 = 0, wy, ;| —w; > 20041 e, + joq + 2ky for € > 1. Let
Wy :=wh V ky V j, where j := max{jy, : 1 <0 <d,1<p<q}. Assume 85wy — 0 and
v > 1. Let

ne—(ja1+wiVkn) 4 ; ”t*(]'d,ﬁwngn) d
/
Z,t = Z HAJ/ z+w”' W= Z H z+W”'
=21k, i=211 -1k, /=1
, _(]d,1+wd\/kn) B d
L[Nd,if = Z (7171)q <H z—|—w HT ]El ) .
i=2711"1k, (=1
Then we have
E()uglt —u’g,t‘ 1oy ) < Ke(@))7at/" (C.33)
2
E((ﬂ"glt) 1{0?}) < K( n51 4 (5,k0)" ) (C.34)

Proof. Letsg = 0,5y :=sy_1+q, £ > 1. Let {11}7 , be an enumeration of {j;, : 1
¢ <d,1<p<gqp}suchthaty =j,;_  ifs) 1 <1 <sy Thatis, foreach1 <1 <
there is a unique pair (£(1), p(I)) such that 4 = jy) ,(1)-

Let 07 v o= X0, — X0+ (Vi — YD Xiem — (Vo — YD Xiemts (i =
Y (Xi+m — Xi+m )- For any integer p > 1, weletky, = —k, if p =1and kp,, = 2r—1k,

<
q

if p > 1. Now let m; := w’g(l) +j€(l),p(l); m; = ZU?(Z) +j€(l),p(l) — kp(l),n' Using the
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notations, we obtain (recall (B.3) for Q)

d q o d
H Ajf(Y)?+w? - H( i,my,m; + gz g,y ) (%ﬂ)q H Aif( itwj) — HCZ My, m;/
(=1 =1 (=1 C 35)
d o d ( )
n
HAjg(Y)i+wg - (,),;ﬂ)q HAj (X z+w/ - Z H gz ,my, ml H Cz my, m

Apply (A.1) for X and v, and the fact that x has bounded moments, we get for any
k > 2 that

(Isz,m| ) < K&hw'}; (|§me,| ) < K.

For a fixed Q € Qg let y = |Q°| whence u > 1. For r > 2, apply the Holder’s
inequality with exponents (ry, ..., ru, 1), we get
—_———

d

For 1 < r < 2, we note (C.36) still holds. Now let’s consider Q¢ = {I*}. Let (¢*, p*)
be the associated pair such that 1« = j« p+. Let H'. = ]-l’fm;* ® gifp* =1, and
N = Fliy,, ©Gifp* > 1. Thus, we have [E (g7, . [Hl). )| < Kefwj(1+

| Xitmy | + |Xi+m;* ), which yields E (‘IE <€Zml*,m§* |§Ie g;/"ml/m; ‘H?,l*> ’) < Ké&hw'" since

“{

On the other hand, we have by Holder’s inequality (since r > 1) that

r=1

" H 1 e o
) B lgc (E( Gyt )) ( (zle—g[gglml n )) K (817,

(C.36)

ngm;m H glmlm,

leQ

X1+m1 XH—ml

( zml* m’* H gl m,m |%l l*) ‘) S ngéfl:[E ((1 + |Xi+ml*‘ + |Xz+m;* |) ll;l]: i - 1 ’ )

( o, TL €5 ) < K(&h(@))".

Also note that "

me

we thus have by Lemma A.6in ]acod et al. (2017) that

n
) Tl Cl - is measurable with respect to ]-"l+w i1~k ® g,

e -1 1y/2r s(o—7)/2r
E Z zml* mj, H Q g, 1{071} <K, (@Z(Sg 4 (ws)(r—i- )/ r5np )
i=211"1k,

< K (@)Y
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The last inequality is due to &,@" — 0. This proves (C.33).

Now we prove (C.34). Let cof = ngl A, (x )?er;} — ngl (jo; kn) (When the index

set is empty, we let the productbe 1, e.g., for £ =1, Hg,_:ll Aj, (X)?ern , = 1). Then @ =
2?21 @gg, where @Zg = ”(].E)?er? Hg;ﬁ Aj[/ (X)ﬂwn/é, H?ﬁ:gﬂ r(jor; kn). By Lemma B.1,
we have |[E (c@fg) ‘ < Kk;, . Next, using again Lemma B.1, we have forany 1 < ¢, ¢/ < d

that

< Kk; 2 + K((I —hy) V1)77, (C.37)

’E (‘Oz JrCHm €/>

where h, 1= wj; + j+ (2971 + 1)k, Since v is bounded and v > 1, we have (C.34)
by (C.37). 0

Lemma C.12. Assume all conditions of Theorem 4.3 hold. We have

a1.3)¢ ., s(,i") /* q"
nt At 0 ,)/S dAs. (C'38)
j’ik) +s(j',j; k)), and

Proof. For ¢ = 0,1,2, let Sy(j,j;in)1 := s¢(j,j’;0) +Z§<n:1( e,
:= S(j, i’ in)1 + Se(,j'sin)2-

Se(j,i"5in)2 := Lisi, (505, i'5Kk) + (5, j;K)) - Let s¢(j, ') -
We first prove

Sy (u (7,0;,i) 2 Uz, ki, i + U, ki, ie) + (2in+1)u(4,j,j’);?)
(C.39)

r, so(j,j’)/o 21" dA,.

Since v > 1, is bounded, we have Sy(j,j’; in)2 fot ’ysqﬂdAS < Kil=? — 0. It is therefore
sufficient to replace sy(j,j’) fot 'yg//dAs by S;(j,i’;in)1 fot ’yg//dAS on the RHS of (C.39).
Using the decomposition (D.1) (for j & j'(+k)), for k < i,, we have E(6,(G)?) <
K6y (kn V iy); Lemma B.3 gives E(|v/8,R(j @' (+k),2)|) < K (h(kn V in))1/7, since
p > 1/2, we can find some r > 1 such that (&} (k, V in))"/" < \/8u(ky V in) whence
E(|vouR(G @) (+k),2)|) < K\/6u(kn V in); we also have E(|/6,R(j & j'(+k),3)|) <
Kk, ? by Lemma B.1; since i26, — 0, we have by Lemma A.2 and Lemma A.7 in Jacod
et al. (2017) that (|[H!| + |R(j @ j'(+k), 1)|)v/dnin — 0 since (ky V in)d5 /% = 0.
Therefore, we have

t 1!
Y (5nu(7,k;j,j’);? —r(j @j’(+k))/0 v dAS) Lo (C.40)
k=1
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Let U'<4-i I = 0 B S 0y O = U4+
fo "dA,. C4(j,j’)# can be decomposed into

5
C4(j, i = Y D4(0)], (C.41)
/=1
where

Du(V)f = 0u(U(4,],j")F — U'(44,)7);

0420 = (rG)r() = rliska)r(§kn)) [ o7 dAs

np—w(4) ,
D4(B)f = r(jikn)r(j'; (/ WdA— Y () w?é(n,i+1)>;
i=21"1k,
n—w(4)n ,
Du(@)f = r(ika)r(§5kn) ) (V)T (af6(n,i+1) = 6n);
i=21"1k,
ng—w(4)n ,
D) =60 Y (T (A500185 00 wgary — TGk (K) )
i=27"1k,
Now we’ll prove
<5 U4,,i') / . dA) L0 (C.42)

by almost repeating the analysis to obtain (C.40): [E (|3D4(1)',’?| 1 {Q?}> < K, (8hkn)'/" by
Lemma C.11; since x has bounded moments of all orders and vy is bounded, Lemma B.2
leads to |D4(2)}| < Kk, %; next Lemma A.2 and Lemma A.7 in Jacod et al. (2017) imply
Vo (D4(3) + Dy(4)1)iy L, 0; a direct application of the second part of Lemma C.11
gives E((D4(5)7)?) < K(duky + 64k, ?"). This proves (C.42) and together with (C.40),
we have (C.39).

We can prove in a similar manner

in t "
O (U(5,0;i,i’)?+ ). (U(5rk;i,i’)?+U(5,k;i’,i)?)> = Sl(j/j/)/() 7 dA. (C43)
k=1

t 1"
On ( (6,0:4,i")F + Z (6,k:j,i) +U(6,k;i’,i)?)> L>Sz(i,i’)/0 7 dA,. (C44)

(C.38) follows from (4), (C.39), (C.43) and (C.44). Il
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Lemma C.13. Assume all conditions of Theorem 4.3 hold. We have

1. .. r r(j)r(i) [t
n—t‘TZ(]/]/)?—> (]Lf] ) /0 7! & dAs; (C.45)

1. R(HRG) [ RG)r() [t g r(ORG) [t 4
15,67y F ROIRG )/ z.dA, - RO )/ zda, — TWRE )/ T d A,
0 At Jo A Jo

n At
(C.46)

Proof. We prove (C.45), and

*\n . t
HG) v, r() / iz dA, (C47)
i Ar Jo

can be proved analogously. In view of (3.17) in Jacod et al. (2017), (C.46) follows
immediately from (C.47).

We first introduce the following notations:

nt ) I -~
B = UG~ L bk e ()@ (s = F 0 Grraiany
i=qn

%(1)? = ln (Ai(Y)?—&-w@)”Ajl(Y)Z-w( 3)% (,)/1 )q A (X)1+w(3) Aj/(X)?+w(3)§’);
5 (A,(x)lﬂ, Ay (0 ey — (k)i kn) )

-~

(G: kn)r(j’ shn) (77)1 (51' — 7).

3
—
(€]
~—
I
=~

Then we have an easy estimate by the independence of F(*) and G and Lemma B.1
that IE(‘IE < 2)1 | H! )D < Kk,°. Moreover, we have E((B(2)")?) < K since
( 5” 2 }]—"”) < K (see the proof of Lemma A.10 in Jacod et al. (2017)). Since

B(2)!is 7—[;1 It 3n -measurable. Now Lemma A.6 in Jacod et al. (2017) yields

lE(’Z?;O w(3)n B(2)! t}) < Kk/25,/1/2. Using the decomposition (C.35), apply
Holder’s inequality, we obtain

2

1 p_q
1) < Kok o

Apply Cauchy-Schwarz inequality, we have [E <‘2 I og (1)r
Next, we have by Lemma A.10 in ]acod etal. (2017) that E (‘Z?;;SU(C%M B(3)" ; }) <
55 Since [B}| < 4 ‘zg LT PO (0)2| and P(Qf) — 1, we have Bf —+ 0. Now
the proof of (C.45) is complete [

24



D Proof of the Main Theorems

Let
3
Z(j)i =: G —r(j;kn)HY + Y _ R(j, O)F, (D.1)
/=1
where
. ko —i
. r(],kn) /t q ny—Kn—J1 '
RG, 1D} = ——L ==~ dA; — Mad(n, 1) |;
(G, 1) NGw (0% s i_an (vi)1aio(n,i+1)

R(j,2) := /3x (ReMeDI(Y;j, ky)! — ReMeDI' (x;j, kn)?) ;

5,3 = " 1) [ogaa,

Proof of Theorem 4.1. 1t suffices to show /6,Z(j)" L5 0 in view of (4). Since 7 is
bounded, a direct application of Lemma B.1 yields [E (5,1(6?)2) < K(SnEn — 0; Lemma
A.2 and Lemma A.7 of Jacod et al. (2017) imply /&, (|r(j; k) H}'| + |R(j, 1)}]) Lo
Lemma B.3 yields v/, E (|9%(],2)’t1| 1{07}> < K(6%,)Y/" — 0 whence v/3,%(j,2)! ——
0 since P(Q}) — 1; Lemma B.2 gives /3, |R(j,3)?| — 0. This completes the proof. [

Proof of Theorem 4.2. Now we have the following:
RGO 0 (1RG,2)F [10y) ) < K76 192G,3)7)] < Kig °0,1

which are immediate in view of Lemma A.7 in Jacod et al. (2017), Lemma B.3 and
Lemma B.2, respectively. Thus, we have 2i(j,2) L, 0 for r close to 1 and P(Qf) —1,
and R(j,3)} L, 0in view of (14). Now the first part of Theorem 4.2 is a simple
consequence of Theorem C.1 and part (b) follows directly the proof of Theorem 3.4
in Jacod et al. (2017). O

Proof of Theorem 4.3. The convergence is an immediate result of Theorem 4.2, Lemma C.12
and Lemma C.13. O
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E Additional Simulation Studies

Recall the settings of the simulation studies

dX; = Kl(ﬂl — X,})dt + atdWLt + (fudN,g; d_O't2 = Kz(]/lz — 0}2)dt —+ 1’]0’td_W2,t + (;IQItht,'
Corr(Wy, W) =v;  &1p ~ N (0,42/10); Ny ~ Poi(A); &ap ~ Exp(6),

where we set
k1 = 0.5, uy = 3.6; kp = 5/252; up =0.04/252; 1 = 0.05/252; v=—-05 A =1, =1.
For the noise process:

Xiv1 = pXi+ei, ¢ EY <0,1 —P2> , el <1,

1 =Cyvh dri = —py(7i — p)dt + o dW.

We set p = 0.7, py = 10, ¢ = 1+ 0.1cos(2nt), 0o, = 0.1, C, = 5 x 10~%. For the
observation times: {t!'}; follow an inhomogeneous Poisson process with rate na; where
ay = (1 4+ cos(2rt)) /2.

SFaculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue,
Cambridge, CB3 9DD, United Kingdom. Email: z.merrick.li@gmail.com

YFaculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue,
Cambridge, CB3 9DD, United Kingdom. Email: obl20@cam.ac.uk.
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E.1 The feasible CLT

We examine the feasible CLT presented in (21) of Li and Linton (2020) for ¢ = 0,1, 2.
The QQ-plots in Figure E.1 clearly support the limit distribution.

E.2 Discreteness of prices

This section studies the “discreteness” of asset prices. With the minimal ticks, the
observed price becomes [Y!'] instead of Y/*, where [Y/] is the rounded price. Conse-
quently, the “noise”, the deviation of the observed price from the efficient price, has an

additional component due to the discreteness:

g=-X = -+ Y ex E1)
—_—— ——
discreteness error  microstructure noise

In our simulation design, we round the observed real price to 1 cent,
[Y/"] =log ([100exp (Y{")]/100). (E.2)

In Figure E.2, we plot the mean estimates (the blue solid line) of the first 20 autocorrela-
tions of the rounded noise based on the observed prices [Y}] in the left panel. Compared
to the true parameters (red stars), we see that the ReMeDI estimator retains its accuracy
in the presence of additional error due to price discreteness. In the right panel of
Figure E.2, we estimate the autocorrelations functions using the sample autocorrelation
function of noise €/ = [Y'] — X! directly. As expected, the estimates are more accurate

than the ReMeDI estimates. But they are not feasible in practice as noise is latent.

E.3 Robustness to the choices of tuning parameters

Both ReMeDI and LA are nonparametric estimators and the tuning parameter k, plays
an important role in the real performance. To study the robustness to the choices of k;,
we select a wide range of tuning parameters for both estimators and plot the mean-
squared error (MSE) in Figure E.3 for each k;,. We observe that the LA estimators are
quite sensitive to the value of k;;, and the MSE increases as k; increases. The ReMeDI
estimators, however, remains small MSE across the different k,;s. Thus, we conclude
that the ReMeDI approach is very robust to the choice of tuning parameters compared
to the LA method.
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Figure E.2: Estimation of the autocorrelation function of noise using rounded price. The blue
solid line in the left panel is the mean estimates of 1,000 simulations by the ReMeDI estimators
based on rounded observed price. The blue solid line in the right panel is the mean estimates
of 1,000 simulations by the sample autocovariance function based on the noise directly. The
shaded areas are the simulated 95% confidence intervals. The red stars are the true parameters.
We set n = 23,400. The tuning parameter is k,, = 10.

E.4 Simulation in the Jacod et al. (2017) setting

This section replicates the simulation studies of Jacod et al. (2017), in which the station-
ary part of the noise x follows a moving average process with strong and persistent
autocorrelation patterns.! It is also interesting to examine the performance of the
ReMeDI estimators in this setting. Moreover, we perturb some key parameters to assess
the robustness of the two approaches.

Figure E.4 reports the estimates of autocovariances of noise in exactly the same
setting as in Jacod et al. (2017). It seems that the LA approach outperforms the ReMeDI
estimators. However, Figure E.5 shows that the specific choice of ¢ (the constant volatil-
ity of the efficient price) and the tuning parameter of LA leads to the outperformance.
In the top panel, we see that the advantage of LA over ReMeDI disappears when the
tuning parameter varies slightly, and LA performs less well when the tuning parameter
becomes larger. The bottom panel reveals that performance of LA largely depends on
the volatility; a small perturbation of the volatility leads to large biases and variances.
But the ReMeDI approach is relatively more robust.

Jacod et al. (2017) claim the simulation setting is motivated by their empirical findings; however,
as we have demonstrated via our simulation studies that the extremely strong autocorrelation patterns
found are largely due to the finite sample bias, see another study by Li et al. (2020).
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Figure E.3: Mean squared error (MSE) of ReMeDI and LA estimators of the first 20 autocovari-
ances of noise with different choices of the tuning parameter. We set y; = 1Vt so that the noise
process is stationary. We consider k,, = 5,10, 15, 20, 25,30. We set n = 23, 400.
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—— True autocovariances
4 - - ReMeDI estimates

3 --- 95% Confidence interval
'\ --- LA estimates
9 | - o- 95% Confidence interval

Autocovariances

Figure E.4: Estimating autocovariances of noise using the simulation setting in Jacod et al.
(2017). The black stars are the mean estimates of the sample autocovariances of noise based on
1,000 simulations. The blue-dotted-diamonds are the mean ReMeDI estimates, and the dotted
blue lines are the 95% confidence intervals. The red-dotted-circles are the mean LA estimates
and the dotted red lines are the 95% confidence intervals. The tuning parameter for the ReMeDI
estimators is fixed at k,, = 10.

F On the Choice of the Tuning Parameter k,

Like many nonparametric estimators, the implementation of the ReMeDI estimators
needs to select some tuning parameter, which controls the lengths of the disjoint
intervals here. We propose a simple rule to choose the tuning parameter. We construct
a simple statistic as the benchmark. Its probability limit is a function of several true
moments of the noise. We then estimate those moments by ReMeDI for a given tuning
parameter and compare with the benchmark statistics. This gives an “error function”
for a selected tuning parameter, and we select the one with a small error. The selection
procedure is able to adjust the choices of the tuning parameters to reflect the degree
of serial dependence: it selects a smaller (or larger) tuning parameter when the serial

dependence in the microstructure noise is weaker (or stronger).

F1 Methodology 1

We assume k;, satisfies (14) in Li and Linton (2020). The methodology introduced here
can also be applied to other choices of k;, e.g., k; specified in (12).
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Let k1 := (—1,2) and jo := (0,0), we obtain the following estimates

t
o 7ids
Ay

nltReMeDI(Y;jo, ki)} xr, (ro—r —ry+r3). (F.1)
ReMeDI(Y;jo, k1) /n: provides a precise proxy of the probability limit for at least
three reasons. First, the statistics are free of tuning parameters; second, the “non-
overlapping intervals” trick effectively removes any bias due to the efficient price; third,
the non-overlapping intervals appear in ReMeDI(Y;jo, k1) /n; are very short, thus
the variation induced by the efficient price is largely reduced. Therefore, we consider
ReMeDI(Y;jo, k1) /n: as a “good” yet simple proxy that compresses the information
of the first 4 autocovariances of the microstructure noise.

We rewrite ﬁ?e (defined in (19) of Li and Linton (2020)) as R\Z’an to highlight the
dependence of ﬁf’g on k,. Given arbitrary k,, we obtain I/{\'Z’ék",ﬁ = 0,1,2,3, as the
estimates of the first 4 autocovariances of the noise. Now we define a random variable

as a measurement of the squared estimation errors:
~ ~ ~ ~ 1 2
SqErr (k) = (R;_?fokn — Ry — R 4 RV n—ReMeDI(Y;jO,kl)’;) . (F2)
7 7 7’ 4 t

Intuitively, SqErr(k, )} measures (the square of) the bias of estimating f(f v2ds(rg — 11 —
rp +13)/ A for a given k. It is decreasing in k;, if noise is autocorrelated since larger
ky, helps to reduce the bias. Figure F.1 plots the mean estimates of SqErr(k, )}’ against
different k, using simulated data. Indeed, we observe fast decreasing curves. Therefore,
the plots suggest that larger k; is always preferred to minimize the bias. However,
larger k; increases the size of the intervals, inducing more variation caused by the
efficient price.

Now the selection rule is clear: select the “minimal” k,, at which the error function
SqErr(ky)} is perceived as “close” to zero. Consider an example, in which the noise
follows an AR(1) process with the AR(1) coefficient p = 0.7. The plot in the top panel of
Figure F.1 suggests that proper choices of k,, would be k;, = 8,9, or 10. When the serial
dependence becomes weaker, a smaller k,, would be sufficient to reduce the bias. The
selection rule will take the degree of the dependence into account and acts accordingly.
We observe in the bottom panel of Figure F.1 that when p = 0.4, the selection rule will
pick k, = 3,4, or 5.

33



Algorithm 1 Choose k,

k@ <— the maximum choice of kj,

Oto] ¢ error tolerance

disw < size of local searching window
Err < error vector

1, u] < simple search range

E2
fork = 1to k'™ + 1+ djsy do

R, R Ry, R« ReMeDI with k

Err(k) < SqErr(k)}

Err™® «— max(Err(1 : [k /2]))

fork = 1to k™ 41 do

min 7.

< min(Err(

LocalErr X
< max(Err(k :

LocalErr

dlsw) )
dlsw) )

if max{Lf)calErrmirl /Err™®, LocalErr™® /Err™®™} < J;,) then
ky, + k
break

max

I”<~+
k+

if k, = k™ + 1 then
kn < argmin Err(I : u)
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Figure F.1: Mean estimates of SqErr(k, )} (defined in (F.2)) based on 1,000 simulations. The
AR(1) coefficients of the noise process are set to 0.7 and 0.4 to get the top and bottom panel.

F1.1 The algorithm to choose k;,

Algorithm 1 is designed to select the tuning parameters k,, which control the lengths of
the non-overlapping intervals in the ReMeDI estimators, in which we utilize the error

function (F.2).

F2 Methodology 2

In this section, we consider a parametric model and study the “optimal” k,,, which
minimizes the mean squared error (MSE).
Let n be the number of observations, and let the efficient price satisfy

1
n _ n _ n __ n
i =X+ —=ni, e1=pg+u, Y =X te.
Vn
where {#;};, {u;}; are normal i.i.d. with mean zero and variance (7,?, 02, respectively.
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Given / € IN*, we have
E ((Yi" =Y ) (Vi — in+£+kn)) = 1g = 2r(E+ k) +1(0+2kn),

where r(-) is the autocovariance function of e. Hence, the leading term of the bias

term is given by 202071 /(1 — p?) and the leading term of the variance is given by

2l+kn) 2304 .
4039_ p2)2n 3’1;2’7. Therefore, the optimal k;

Zk%a,‘?L /3n2; we can select k,, to minimize

should satisfy

8((75/(7,?)2 log (%) p%
(1—p?)?

(k)20 = a(p, aﬁ/a,?)nz, where a(p, 05/0%) = (E3)
Several observations are immediate: (1) the function k kzp_Zk is increasing; (2) the
function a(-) is increasing with respect to both variables. Hence, we conclude that
there is unique k;, that satisfy the equality in (F.3), and kj;, becomes larger when the
dependence is stronger (larger p) or the noise-to-signal ratio is larger (larger o2/ 0,%). In
practice, the implementation of selecting k;, by this minimal MSE rule requires some
proxies of p, 02/ (7,%, which can be obtained by the maximum likelihood approach.

The two methodologies presented here are mostly useful as a guidance to select
the tuning parameters if the sample size is small to moderate. Our experience with
high-frequency data is that the ReMeDI approach is quite robust to the choices of k;,
when applied to high-frequency data, see also the simulation studies presented in
Section E.3. Hence, we stick to a fixed k, in both the simulation and the empirical

studies in the main text.

G Additional Empirical Studies

We replicate the empirical analysis presented in Li and Linton (2020) using the trans-
action prices of General Electric (GE) in January 2018. The estimates are presented in
Figure G.1. Let’s briefly highlight the findings: (1) noise tends to be positively autocor-
related, and the autocorrelation function remains positive up to 12 lags. This differs
from our findings in the transaction prices of KO, where noise has more complicated
autocorrelation patterns. (2) We observe larger discrepancy between the LA estimates
and the ReMeDI estimates when estimations are performed on the entire sample of the
month. As we analysed in Li and Linton (2020), the volatility burst of the efficient price
(in a certain period of the month) is at least partially responsible for the increase in the

finite sample bias of the LA estimators.
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Figure G.1: Estimation of autocovariances of noise for GE in January 2018. In the top panel, we
use the transaction prices of GE on 2 January 2018; in the middle panel, we use the transaction
prices of GE in the second trading week (8 January 2018 to 12 January 2018); we employ the
entire transaction prices of GE in January 2018 in the bottom panel. The tuning parameters for
ReMeDI and LA are 10 and 6, respectively. The shaded area in the top panel represents the 95%
confidence interval, and we set i, = 5, ¢, = k>/%/n to compute the asymptotic variances of the
ReMeDI estimators, where 7 is the number of observations.



Next, we estimate the autocovariances of noise using the transaction prices of
Citigroup (Citi) in January 2011. This is exactly the transaction prices used by Jacod
et al. (2017) in their empirical analysis. Figure G.2 presents the estimates for each
trading day in January 2011. The two estimates are very close, and the LA estimates
are slightly larger. This is not surprised in view of the analysis by Li et al. (2020): the
stock is extremely liquid (more than 10 observations per second on average) and the
noise-to-signal ratio is also very large. It is in line with our analysis that the LA method
works when both the data frequency and noise-to-signal ratio are high.
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